Does regulation hold the key to optimizing lipopeptide production in for biotechnology?

Lu Zhou, Monica Höfte, Rosanna C Hennessy
Author Information
  1. Lu Zhou: Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  2. Monica Höfte: Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
  3. Rosanna C Hennessy: Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.

Abstract

Lipopeptides (LPs) produced by spp. are specialized metabolites with diverse structures and functions, including powerful biosurfactant and antimicrobial properties. Despite their enormous potential in environmental and industrial biotechnology, low yield and high production cost limit their practical use. While genome mining and functional genomics have identified a multitude of LP biosynthetic gene clusters, the regulatory mechanisms underlying their biosynthesis remain poorly understood. We propose that regulation holds the key to unlocking LP production in for biotechnology. In this review, we summarize the structure and function of -derived LPs and describe the molecular basis for their biosynthesis and regulation. We examine the global and specific regulator-driven mechanisms controlling LP synthesis including the influence of environmental signals. Understanding LP regulation is key to modulating production of these valuable compounds, both quantitatively and qualitatively, for industrial and environmental biotechnology.

Keywords

References

  1. Appl Microbiol Biotechnol. 2015 May;99(10):4333-42 [PMID: 25661819]
  2. Appl Microbiol Biotechnol. 2013 Mar;97(5):1909-21 [PMID: 23053103]
  3. FEMS Microbiol Lett. 2014 Jul;356(2):166-75 [PMID: 25202778]
  4. Biochemistry. 2017 Sep 19;56(37):4925-4926 [PMID: 28862834]
  5. J Nat Prod. 2019 Feb 22;82(2):301-308 [PMID: 30666877]
  6. Can J Microbiol. 2012 Aug;58(8):1027-34 [PMID: 22838838]
  7. J Bacteriol. 2005 Sep;187(17):5967-76 [PMID: 16109938]
  8. Crit Rev Biotechnol. 2022 Dec;42(8):1260-1283 [PMID: 34706600]
  9. Elife. 2021 Dec 31;10: [PMID: 34792466]
  10. ISME J. 2019 Jun;13(6):1575-1588 [PMID: 30787396]
  11. Molecules. 2022 Jan 07;27(2): [PMID: 35056688]
  12. Environ Microbiol. 2020 Dec;22(12):5137-5155 [PMID: 32524747]
  13. Front Bioeng Biotechnol. 2020 Nov 23;8:565619 [PMID: 33330412]
  14. Environ Microbiol. 2019 Mar;21(3):1019-1034 [PMID: 30623562]
  15. PeerJ. 2015 Dec 03;3:e1476 [PMID: 26734508]
  16. Mol Microbiol. 2007 Jan;63(2):417-28 [PMID: 17241198]
  17. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3758-3763 [PMID: 29592954]
  18. Environ Microbiol. 2014 Jul;16(7):2282-300 [PMID: 24673852]
  19. Biochim Biophys Acta. 1998 Jul 17;1372(2):216-26 [PMID: 9675287]
  20. J Appl Microbiol. 2009 Aug;107(2):546-56 [PMID: 19302489]
  21. Biochemistry. 2008 Oct 28;47(43):11310-20 [PMID: 18826255]
  22. Nat Rev Microbiol. 2005 Apr;3(4):307-19 [PMID: 15759041]
  23. Mar Drugs. 2015 Jul 31;13(8):4754-83 [PMID: 26264003]
  24. Appl Environ Microbiol. 2010 Mar;76(5):1497-506 [PMID: 20048056]
  25. Crit Rev Biotechnol. 2020 Dec;40(8):1232-1249 [PMID: 32907412]
  26. Microbiology (Reading). 2008 Jul;154(Pt 7):2070-2083 [PMID: 18599835]
  27. J Appl Microbiol. 1999 Jul;87(1):80-90 [PMID: 10432590]
  28. PLoS One. 2013;8(3):e57991 [PMID: 23483962]
  29. Antimicrob Agents Chemother. 1996 Dec;40(12):2710-3 [PMID: 9124827]
  30. Mol Plant Microbe Interact. 2015 Sep;28(9):1009-22 [PMID: 25961750]
  31. Front Bioeng Biotechnol. 2021 May 28;9:678469 [PMID: 34124025]
  32. Appl Environ Microbiol. 2009 Jul;75(14):4753-61 [PMID: 19447950]
  33. Front Microbiol. 2014 Sep 02;5:454 [PMID: 25228898]
  34. Environ Microbiol Rep. 2016 Oct;8(5):896-904 [PMID: 27557735]
  35. Int J Mol Sci. 2014 Jul 15;15(7):12523-42 [PMID: 25029542]
  36. Chemistry. 2014 Jun 16;20(25):7766-75 [PMID: 24817328]
  37. Appl Environ Microbiol. 2002 Jul;68(7):3416-23 [PMID: 12089023]
  38. Plant Cell Rep. 2017 Nov;36(11):1731-1746 [PMID: 28801742]
  39. Perspect Medicin Chem. 2008 May 09;2:81-112 [PMID: 19787100]
  40. Environ Microbiol Rep. 2017 Oct;9(5):599-611 [PMID: 28703431]
  41. Environ Microbiol. 2019 Jan;21(1):437-455 [PMID: 30421490]
  42. Appl Microbiol Biotechnol. 2000 May;53(5):495-508 [PMID: 10855707]
  43. Biochim Biophys Acta Biomembr. 2022 Oct 1;1864(10):184008 [PMID: 35868404]
  44. Front Microbiol. 2016 Mar 30;7:382 [PMID: 27065956]
  45. Appl Environ Microbiol. 2022 Jan 25;88(2):e0186921 [PMID: 34731056]
  46. Nat Rev Microbiol. 2014 May;12(5):368-79 [PMID: 24736795]
  47. Biotechnol Prog. 2005 Jul-Aug;21(4):1329-34 [PMID: 16080719]
  48. Front Plant Sci. 2020 Nov 09;11:594530 [PMID: 33304371]
  49. Microbiologyopen. 2017 Dec;6(6): [PMID: 28782279]
  50. ISME J. 2016 Sep;10(9):2317-30 [PMID: 26943626]
  51. Front Microbiol. 2019 Mar 19;10:544 [PMID: 30941113]
  52. mBio. 2015 Mar 17;6(2):e00079 [PMID: 25784695]
  53. Comput Struct Biotechnol J. 2021 Mar 02;19:1400-1413 [PMID: 33777336]
  54. Appl Microbiol Biotechnol. 2015 Feb;99(3):1475-83 [PMID: 25216581]
  55. J Bacteriol. 1992 May;174(9):3011-20 [PMID: 1314807]
  56. Microb Cell Fact. 2017 Aug 5;16(1):137 [PMID: 28779757]
  57. J Am Chem Soc. 2013 Dec 18;135(50):18949-56 [PMID: 24251365]
  58. Chem Biol. 2007 Jan;14(1):31-40 [PMID: 17254950]
  59. Crit Rev Microbiol. 2020 Aug;46(4):397-419 [PMID: 32885723]
  60. Int J Mol Sci. 2010 Dec 30;12(1):141-72 [PMID: 21339982]
  61. J Bacteriol. 1995 Aug;177(16):4658-68 [PMID: 7642492]
  62. Front Plant Sci. 2022 Nov 08;13:1008980 [PMID: 36426159]
  63. Microbiologyopen. 2017 Oct;6(5): [PMID: 28621084]
  64. Appl Environ Microbiol. 2002 Sep;68(9):4509-16 [PMID: 12200307]
  65. Mol Plant Microbe Interact. 2006 Oct;19(10):1113-20 [PMID: 17022175]
  66. Nat Rev Microbiol. 2006 Jul;4(7):529-36 [PMID: 16778838]
  67. Environ Microbiol. 2014 Jul;16(7):2086-98 [PMID: 24571678]
  68. Microb Cell Fact. 2018 Aug 4;17(1):121 [PMID: 30077177]
  69. Sci Rep. 2017 Mar 21;7(1):281 [PMID: 28325928]
  70. J Appl Microbiol. 2000 Dec;89(6):992-1001 [PMID: 11123472]
  71. Microb Biotechnol. 2015 Mar;8(2):296-310 [PMID: 25488342]
  72. Microbiology (Reading). 2015 Dec;161(12):2289-97 [PMID: 26419730]
  73. Mol Plant Microbe Interact. 2009 Dec;22(12):1514-22 [PMID: 19888817]
  74. Front Microbiol. 2018 May 23;9:1029 [PMID: 29875748]
  75. Genome Res. 2019 Aug;29(8):1352-1362 [PMID: 31160374]
  76. J Bacteriol. 2006 Apr;188(8):2898-906 [PMID: 16585751]
  77. Appl Environ Microbiol. 2020 Oct 15;86(21): [PMID: 32826219]
  78. Mol Plant Microbe Interact. 2013 May;26(5):585-98 [PMID: 23405865]
  79. Mol Microbiol. 1998 Jun;28(5):917-29 [PMID: 9663679]
  80. Chemosphere. 2021 Feb;265:129090 [PMID: 33293052]
  81. J Pept Sci. 2016 Mar;22(3):149-55 [PMID: 26856688]
  82. Microb Cell Fact. 2021 Sep 23;20(1):185 [PMID: 34556134]
  83. Appl Environ Microbiol. 2009 Nov;75(21):6804-11 [PMID: 19717630]
  84. Front Microbiol. 2021 Sep 14;12:669709 [PMID: 34594308]
  85. New Phytol. 2007;175(4):731-742 [PMID: 17688588]
  86. Curr Microbiol. 2011 Apr;62(4):1185-92 [PMID: 21165740]
  87. Bioresour Technol. 2010 Aug;101(15):6118-23 [PMID: 20303744]
  88. Microbiol Mol Biol Rev. 1999 Jun;63(2):266-92 [PMID: 10357851]
  89. Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23802-23806 [PMID: 32868430]
  90. Int J Mol Sci. 2023 Sep 19;24(18): [PMID: 37762605]
  91. Microbiol Spectr. 2022 Aug 31;10(4):e0126122 [PMID: 35876524]
  92. Front Plant Sci. 2019 Jul 10;10:901 [PMID: 31354771]
  93. Microb Biotechnol. 2021 Jan;14(1):136-146 [PMID: 33151628]
  94. Front Microbiol. 2021 Sep 14;12:732771 [PMID: 34594316]
  95. Aquat Toxicol. 2022 Feb;243:106072 [PMID: 35032912]
  96. Mol Microbiol. 1993 Aug;9(4):787-801 [PMID: 8231810]
  97. Microbiology (Reading). 2003 Jan;149(Pt 1):37-46 [PMID: 12576578]
  98. Front Bioeng Biotechnol. 2021 Jul 13;9:692797 [PMID: 34327194]
  99. Plant Dis. 2019 Nov;103(11):2714-2732 [PMID: 31560599]
  100. J Bacteriol. 2006 May;188(9):3290-8 [PMID: 16621822]
  101. J Ind Microbiol Biotechnol. 2014 Feb;41(2):371-86 [PMID: 23907251]
  102. PLoS One. 2013 May 17;8(5):e62946 [PMID: 23690965]
  103. J Bacteriol. 2007 Sep;189(17):6312-23 [PMID: 17601782]
  104. Appl Environ Microbiol. 2012 Jul;78(14):4826-34 [PMID: 22544260]
  105. mSystems. 2023 Feb 23;8(1):e0098822 [PMID: 36719227]
  106. Mol Microbiol. 1997 Jul;25(2):211-8 [PMID: 9282733]
  107. Chembiochem. 2013 Dec 16;14(18):2439-43 [PMID: 24222604]
  108. Mol Plant Pathol. 2007 May;8(3):233-44 [PMID: 20507495]
  109. J Am Chem Soc. 2023 Feb 1;145(4):2342-2353 [PMID: 36669196]
  110. J Med Microbiol. 2020 Mar;69(3):347-360 [PMID: 31976855]
  111. Trends Plant Sci. 2019 Feb;24(2):165-176 [PMID: 30446306]
  112. Mol Plant Microbe Interact. 2015 Jul;28(7):800-10 [PMID: 25761208]
  113. Appl Microbiol Biotechnol. 2010 May;86(5):1323-36 [PMID: 20336292]
  114. Biotechnol Adv. 2021 Sep-Oct;50:107766 [PMID: 33965529]
  115. Front Microbiol. 2017 Feb 03;8:100 [PMID: 28217113]
  116. Appl Environ Microbiol. 2005 Sep;71(9):5056-65 [PMID: 16151087]
  117. Mol Plant Microbe Interact. 1994 Jan-Feb;7(1):78-90 [PMID: 7909458]
  118. Front Microbiol. 2015 Jul 07;6:693 [PMID: 26217324]
  119. Angew Chem Int Ed Engl. 2024 Jan 15;63(3):e202308251 [PMID: 37870189]
  120. Plant Biotechnol J. 2011 Apr;9(3):283-300 [PMID: 21375687]
  121. PLoS One. 2013;8(3):e59850 [PMID: 23527276]
  122. Microb Biotechnol. 2020 Jan;13(1):233-249 [PMID: 30861315]
  123. Nat Commun. 2015 Sep 28;6:8421 [PMID: 26412281]
  124. Microbiol Spectr. 2022 Dec 21;10(6):e0145622 [PMID: 36287007]
  125. Front Microbiol. 2016 Oct 31;7:1718 [PMID: 27843439]
  126. Chem Sci. 2023 Oct 2;14(41):11573-11581 [PMID: 37886094]
  127. J Nat Prod. 2004 May;67(5):811-6 [PMID: 15165142]
  128. Front Microbiol. 2018 Aug 14;9:1867 [PMID: 30158910]
  129. Appl Environ Microbiol. 1989 Jun;55(6):1340-5 [PMID: 16347926]
  130. Biosci Biotechnol Biochem. 2010;74(5):992-9 [PMID: 20460722]
  131. J Bacteriol. 2001 Oct;183(19):5529-34 [PMID: 11544214]
  132. Microorganisms. 2020 Jul 20;8(7): [PMID: 32698413]
  133. Appl Environ Microbiol. 2010 Feb;76(3):866-79 [PMID: 20008172]
  134. Science. 2011 May 27;332(6033):1097-100 [PMID: 21551032]
  135. Mol Plant Microbe Interact. 2006 Jul;19(7):699-710 [PMID: 16838783]
  136. Nat Microbiol. 2017 May 15;2:17070 [PMID: 28504659]
  137. Environ Microbiol Rep. 2010 Jun;2(3):359-72 [PMID: 23766108]
  138. Microbiome. 2021 Mar 20;9(1):64 [PMID: 33743825]
  139. Int J Mol Sci. 2015 Mar 03;16(3):4814-37 [PMID: 25741767]
  140. Nat Prod Rep. 2020 Jan 1;37(1):29-54 [PMID: 31436775]
  141. Int J Syst Evol Microbiol. 2023 Feb;73(2): [PMID: 36749687]
  142. Pharmaceutics. 2023 Aug 18;15(8): [PMID: 37631370]
  143. Mol Plant Microbe Interact. 2002 Jan;15(1):43-53 [PMID: 11843302]
  144. Mol Microbiol. 2004 Jan;51(1):97-113 [PMID: 14651614]
  145. FEMS Microbiol Rev. 2006 Mar;30(2):274-91 [PMID: 16472307]
  146. PLoS One. 2014 Sep 03;9(9):e105547 [PMID: 25184292]
  147. Syst Appl Microbiol. 2014 Sep;37(6):412-6 [PMID: 25097020]
  148. RSC Adv. 2023 Aug 11;13(34):24129-24139 [PMID: 37577095]
  149. Mol Plant Microbe Interact. 2006 Mar;19(3):257-69 [PMID: 16570656]
  150. Microb Biotechnol. 2015 Jan;8(1):13-4 [PMID: 25545918]
  151. Front Mol Biosci. 2022 Dec 23;9:1064742 [PMID: 36619163]
  152. J Appl Bacteriol. 1985 Feb;58(2):167-74 [PMID: 3980301]
  153. Mol Plant Microbe Interact. 2001 Dec;14(12):1351-63 [PMID: 11768529]
  154. Appl Environ Microbiol. 2010 Feb;76(3):910-21 [PMID: 20023108]
  155. J Bacteriol. 2008 Apr;190(8):2777-89 [PMID: 17993540]
  156. Appl Environ Microbiol. 2003 Feb;69(2):861-8 [PMID: 12571005]
  157. Environ Microbiol Rep. 2015 Oct;7(5):774-81 [PMID: 26085277]
  158. Front Microbiol. 2021 Dec 23;12:791723 [PMID: 35003022]
  159. PLoS One. 2015 May 27;10(5):e0125221 [PMID: 26018559]
  160. FEMS Microbiol Rev. 2010 Nov;34(6):1037-62 [PMID: 20412310]
  161. Mol Plant Microbe Interact. 2002 Apr;15(4):323-33 [PMID: 12026170]
  162. Adv Appl Microbiol. 2013;82:53-113 [PMID: 23415153]
  163. Sci Rep. 2019 Feb 28;9(1):3019 [PMID: 30816229]
  164. Appl Microbiol Biotechnol. 2011 Jul;91(1):63-79 [PMID: 21607656]
  165. Proc Natl Acad Sci U S A. 2012 May 1;109(18):7085-90 [PMID: 22509035]
  166. FEMS Microbiol Rev. 1999 Oct;23(5):591-614 [PMID: 10525168]
  167. Biochim Biophys Acta. 2005 Oct 30;1726(1):87-95 [PMID: 16026933]
  168. PLoS One. 2016 Mar 08;11(3):e0150234 [PMID: 26954255]
  169. BMC Microbiol. 2015 Feb 14;15:29 [PMID: 25885431]
  170. Appl Environ Microbiol. 2023 Mar 29;89(3):e0181922 [PMID: 36877040]
  171. Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):353-6 [PMID: 12448733]
  172. Environ Microbiol Rep. 2013 Feb;5(1):160-9 [PMID: 23757145]
  173. Proc Natl Acad Sci U S A. 2021 Feb 9;118(6): [PMID: 33526668]
  174. Biomed J. 2021 Dec;44(6 Suppl 1):S15-S24 [PMID: 34871815]
  175. Microorganisms. 2021 Aug 18;9(8): [PMID: 34442845]
  176. Microb Biotechnol. 2020 Mar;13(2):368-385 [PMID: 32045111]
  177. ISME J. 2022 Mar;16(3):788-800 [PMID: 34601502]
  178. Curr Biol. 2022 Apr 11;32(7):1523-1533.e6 [PMID: 35235767]
  179. Microbiol Resour Announc. 2020 May 14;9(20): [PMID: 32409540]
  180. ISME J. 2024 Jan 8;18(1): [PMID: 38874164]
  181. Langmuir. 2006 Dec 19;22(26):11337-45 [PMID: 17154623]
  182. Molecules. 2019 Nov 17;24(22): [PMID: 31744250]
  183. Chem Biol. 2007 Jan;14(1):53-63 [PMID: 17254952]
  184. Mol Plant Microbe Interact. 2005 Apr;18(4):324-33 [PMID: 15828684]
  185. J Nat Prod. 2008 Jun;71(6):1011-5 [PMID: 18471020]
  186. J Agric Food Chem. 2013 Jul 17;61(28):6786-91 [PMID: 23763636]
  187. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7266-71 [PMID: 24808135]
  188. Cell Rep. 2020 Sep 22;32(12):108165 [PMID: 32966790]

Word Cloud

Created with Highcharts 10.0.0regulationproductionLPenvironmentalbiotechnologykeyLPsspecializedmetabolitesincludingindustrialmechanismsbiosynthesisLipopeptidesproducedsppdiversestructuresfunctionspowerfulbiosurfactantantimicrobialpropertiesDespiteenormouspotentiallowyieldhighcostlimitpracticalusegenomeminingfunctionalgenomicsidentifiedmultitudebiosyntheticgeneclustersregulatoryunderlyingremainpoorlyunderstoodproposeholdsunlockingreviewsummarizestructurefunction-deriveddescribemolecularbasisexamineglobalspecificregulator-drivencontrollingsynthesisinfluencesignalsUnderstandingmodulatingvaluablecompoundsquantitativelyqualitativelyholdoptimizinglipopeptidebiotechnology?Pseudomonasantibioticsbioengineeringbioprocessingbiosurfactantslipopeptides

Similar Articles

Cited By