Toward a Predictive Understanding of Cyanobacterial Harmful Algal Blooms through AI Integration of Physical, Chemical, and Biological Data.

Babetta L Marrone, Shounak Banerjee, Anjana Talapatra, C Raul Gonzalez-Esquer, Ghanshyam Pilania
Author Information
  1. Babetta L Marrone: Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States. ORCID
  2. Shounak Banerjee: Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  3. Anjana Talapatra: Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  4. C Raul Gonzalez-Esquer: Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
  5. Ghanshyam Pilania: Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Abstract

Freshwater cyanobacterial harmful algal blooms (cyanoHABs) are a worldwide problem resulting in substantial economic losses, due to harm to drinking water supplies, commercial fishing, wildlife, property values, recreation, and tourism. Moreover, toxins produced from some cyanoHABs threaten human and animal health. Climate warming can affect the distribution of cyanoHABs, where rising temperatures facilitate more intense blooms and a greater distribution of cyanoHABs in inland freshwater. Nutrient runoff from adjacent watersheds is also a major driver of cyanoHAB formation. While some of the physicochemical factors behind cyanoHAB dynamics are known, there are still major gaps in our understanding of the conditions that trigger and sustain cyanoHABs over time. In this perspective, we suggest that sufficient data sets, as well as machine learning (ML) and artificial intelligence (AI) tools, are available to build a comprehensive model of cyanoHAB dynamics based on integrated environmental/climate, nutrient/water chemistry, and cyanoHAB microbiome and 'omics data to identify key factors contributing to HAB formation, intensity, and toxicity. By taking a holistic approach to the analysis of all available data, including the rapidly growing number of biological data sets, we can provide the foundational knowledge needed to address the increasing threat of cyanoHABs to the security of our water resources.

References

  1. J Ind Microbiol Biotechnol. 2003 Jul;30(7):383-406 [PMID: 12898390]
  2. Microbiome. 2021 Sep 27;9(1):194 [PMID: 34579777]
  3. ISME J. 2017 Aug;11(8):1746-1763 [PMID: 28524869]
  4. Toxins (Basel). 2021 Jan 09;13(1): [PMID: 33435505]
  5. Appl Environ Microbiol. 2023 May 31;89(5):e0209222 [PMID: 37070981]
  6. Mar Drugs. 2013 Jun 27;11(7):2239-58 [PMID: 23807545]
  7. ISME J. 2020 Dec;14(12):2936-2950 [PMID: 32681158]
  8. J Plankton Res. 2018 Nov;40(6):655-666 [PMID: 30487658]
  9. J Environ Manage. 2021 Jun 15;288:112415 [PMID: 33774562]
  10. Harmful Algae. 2020 Feb;92:101732 [PMID: 32113600]
  11. Oncotarget. 2022 Nov 17;13:1246-1257 [PMID: 36395362]
  12. Sci Total Environ. 2019 Jun 20;670:837-848 [PMID: 30921717]
  13. Environ Sci Technol. 2013 May 21;47(10):5178-84 [PMID: 23586662]
  14. Water Res. 2023 Apr 15;233:119727 [PMID: 36801570]
  15. Nat Rev Microbiol. 2020 Jun;18(6):313-314 [PMID: 32350400]
  16. Front Genet. 2019 Sep 25;10:904 [PMID: 31608125]
  17. Environ Microbiol. 2008 Dec;10(12):3337-48 [PMID: 18759740]
  18. Harmful Algae. 2020 Jan;91:101729 [PMID: 32057346]
  19. Environ Pollut. 2017 Apr;223:676-684 [PMID: 28196722]
  20. Water Res. 2021 Jun 1;197:117073 [PMID: 33784609]
  21. Harmful Algae. 2016 Apr;54:223-238 [PMID: 28073479]
  22. PLoS One. 2011 Mar 18;6(3):e17615 [PMID: 21445264]
  23. PLoS One. 2021 Sep 22;16(9):e0257017 [PMID: 34550975]
  24. Environ Sci Technol. 2017 Jun 20;51(12):6745-6755 [PMID: 28535339]
  25. Nat Rev Microbiol. 2011 Feb;9(2):99-108 [PMID: 21200397]
  26. mBio. 2020 Jun 30;11(3): [PMID: 32605981]
  27. Environ Health. 2008 Nov 07;7 Suppl 2:S2 [PMID: 19025673]
  28. Harmful Algae. 2020 Jan;91:101601 [PMID: 32057347]
  29. Water Res. 2020 May 15;175:115639 [PMID: 32155485]
  30. Front Bioeng Biotechnol. 2019 Jun 04;7:128 [PMID: 31231642]
  31. Environ Sci Technol. 2017 May 2;51(9):4841-4850 [PMID: 28368104]
  32. Environ Microbiol. 2021 Dec;23(12):7278-7313 [PMID: 34056822]
  33. Harmful Algae. 2017 Nov;69:18-27 [PMID: 29122239]
  34. Water Res. 2023 Apr 1;232:119710 [PMID: 36801534]
  35. Sci Total Environ. 2020 Mar 10;707:136173 [PMID: 31972913]
  36. Nat Biotechnol. 2020 Jun;38(6):685-688 [PMID: 32483366]
  37. Nature. 2023 Mar;615(7951):280-284 [PMID: 36859547]
  38. Sci Total Environ. 2021 Jun 20;774:145462 [PMID: 33609824]
  39. Philos Trans A Math Phys Eng Sci. 2020 Mar 6;378(2166):20190394 [PMID: 31955674]
  40. Appl Environ Microbiol. 2022 May 10;88(9):e0246421 [PMID: 35438519]
  41. Environ Sci Pollut Res Int. 2022 Nov;29(51):77157-77187 [PMID: 35672647]
  42. Nature. 2003 May 22;423(6938):398-9 [PMID: 12761538]
  43. Proc Natl Acad Sci U S A. 2021 Oct 12;118(41): [PMID: 34607950]
  44. Science. 2022 May 27;376(6596):1001-1005 [PMID: 35617400]
  45. Harmful Algae. 2022 May;114:102223 [PMID: 35550294]
  46. Microorganisms. 2023 Mar 27;11(4): [PMID: 37110273]
  47. Environ Pollut. 2021 Nov 1;288:117682 [PMID: 34271516]
  48. Nature. 2019 Oct;574(7780):667-670 [PMID: 31610543]
  49. BMC Syst Biol. 2012;6 Suppl 1:S16 [PMID: 23046922]
  50. PLoS One. 2018 May 23;13(5):e0196278 [PMID: 29791446]
  51. Harmful Algae. 2021 Feb;102:101992 [PMID: 33875180]
  52. Toxicon. 2017 Nov;138:169-172 [PMID: 28899665]
  53. Front Environ Sci. 2020 Nov 2;8:581091 [PMID: 33365316]
  54. Front Bioinform. 2022 Jan 17;1:826370 [PMID: 36303775]
  55. Toxicol Appl Pharmacol. 2005 Mar 15;203(3):192-200 [PMID: 15737674]
  56. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  57. Harmful Algae. 2021 Aug;108:102080 [PMID: 34588116]
  58. Toxins (Basel). 2014 Dec 12;6(12):3354-87 [PMID: 25514094]
  59. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  60. Environ Health. 2008 Nov 07;7 Suppl 2:S4 [PMID: 19025675]
  61. Ecology. 2007 Nov;88(11):2783-92 [PMID: 18051647]
  62. Environ Sci Technol. 2021 Oct 5;55(19):12776-12779 [PMID: 34529413]
  63. BMC Bioinformatics. 2019 Apr 18;20(Suppl 4):168 [PMID: 30999839]
  64. Nat Toxins. 1994;2(4):228-35 [PMID: 7952948]
  65. Harmful Algae. 2020 Jan;91:101587 [PMID: 32057337]
  66. Brief Bioinform. 2022 Nov 19;23(6): [PMID: 36352504]
  67. J Environ Manage. 2017 Oct 1;201:227-240 [PMID: 28667841]
  68. Front Microbiol. 2022 Mar 16;13:809989 [PMID: 35369463]
  69. Int J Environ Res Public Health. 2022 Oct 28;19(21): [PMID: 36360992]
  70. Harmful Algae. 2015 Nov 1;49:68-93 [PMID: 27011761]
  71. Environ Microbiol. 2022 May;24(5):2502-2515 [PMID: 35466520]
  72. Mar Drugs. 2021 Apr 16;19(4): [PMID: 33923826]
  73. Environ Sci Technol. 2021 Oct 5;55(19):12741-12754 [PMID: 34403250]
  74. Mar Pollut Bull. 2010 Oct;60(10):1849-55 [PMID: 20580024]
  75. Front Microbiol. 2022 Apr 25;13:851450 [PMID: 35547145]
  76. Limnol Oceanogr. 2020 Dec;65(12):2866-2882 [PMID: 33707786]
  77. Toxins (Basel). 2021 Dec 16;13(12): [PMID: 34941742]
  78. Harmful Algae. 2022 Jun;115:102191 [PMID: 35623685]
  79. Toxicon. 1999 Aug;37(8):1181-5 [PMID: 10400301]

Word Cloud

Created with Highcharts 10.0.0cyanoHABscyanoHABdatabloomswatercandistributionmajorformationfactorsdynamicssetsAIavailableFreshwatercyanobacterialharmfulalgalworldwideproblemresultingsubstantialeconomiclossesdueharmdrinkingsuppliescommercialfishingwildlifepropertyvaluesrecreationtourismMoreovertoxinsproducedthreatenhumananimalhealthClimatewarmingaffectrisingtemperaturesfacilitateintensegreaterinlandfreshwaterNutrientrunoffadjacentwatershedsalsodriverphysicochemicalbehindknownstillgapsunderstandingconditionstriggersustaintimeperspectivesuggestsufficientwellmachinelearningMLartificialintelligencetoolsbuildcomprehensivemodelbasedintegratedenvironmental/climatenutrient/waterchemistrymicrobiome'omicsidentifykeycontributingHABintensitytoxicitytakingholisticapproachanalysisincludingrapidlygrowingnumberbiologicalprovidefoundationalknowledgeneededaddressincreasingthreatsecurityresourcesTowardPredictiveUnderstandingCyanobacterialHarmfulAlgalBloomsIntegrationPhysicalChemicalBiologicalData

Similar Articles

Cited By (3)