Deep learning in spatially resolved transcriptfomics: a comprehensive technical view

Roxana Zahedi, Reza Ghamsari, Ahmadreza Argha, Callum Macphillamy, Amin Beheshti, Roohallah Alizadehsani, Nigel H Lovell, Mohammad Lotfollahi, Hamid Alinejad-Rokny
Author Information
  1. Roxana Zahedi: UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia.
  2. Reza Ghamsari: UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia.
  3. Ahmadreza Argha: The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia.
  4. Callum Macphillamy: School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, 5371, Australia.
  5. Amin Beheshti: School of Computing, Macquarie University, Sydney, 2109, Australia.
  6. Roohallah Alizadehsani: Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia.
  7. Nigel H Lovell: The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia.
  8. Mohammad Lotfollahi: Computational Health Center, Helmholtz Munich, Germany.
  9. Hamid Alinejad-Rokny: UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia.

Abstract

Spatially resolved transcriptomics (SRT) is a pioneering method for simultaneously studying morphological contexts and gene expression at single-cell precision. Data emerging from SRT are multifaceted, presenting researchers with intricate gene expression matrices, precise spatial details and comprehensive histology visuals. Such rich and intricate datasets, unfortunately, render many conventional methods like traditional machine learning and statistical models ineffective. The unique challenges posed by the specialized nature of SRT data have led the scientific community to explore more sophisticated analytical avenues. Recent trends indicate an increasing reliance on deep learning algorithms, especially in areas such as spatial clustering, identification of spatially variable genes and data alignment tasks. In this manuscript, we provide a rigorous critique of these advanced deep learning methodologies, probing into their merits, limitations and avenues for further refinement. Our in-depth analysis underscores that while the recent innovations in deep learning tailored for SRT have been promising, there remains a substantial potential for enhancement. A crucial area that demands attention is the development of models that can incorporate intricate biological nuances, such as phylogeny-aware processing or in-depth analysis of minuscule histology image segments. Furthermore, addressing challenges like the elimination of batch effects, perfecting data normalization techniques and countering the overdispersion and zero inflation patterns seen in gene expression is pivotal. To support the broader scientific community in their SRT endeavors, we have meticulously assembled a comprehensive directory of readily accessible SRT databases, hoping to serve as a foundation for future research initiatives.

Keywords

References

  1. Bioinformatics. 2021 Jul 12;37(Suppl_1):i299-i307 [PMID: 34252941]
  2. Genome Biol. 2020 Dec 10;21(1):300 [PMID: 33303016]
  3. Biophys Rev (Melville). 2023 Feb 07;4(1):011306 [PMID: 38505815]
  4. Nucleic Acids Res. 2021 May 21;49(9):e50 [PMID: 33544846]
  5. Brief Bioinform. 2023 Sep 20;24(5): [PMID: 37544658]
  6. Bioinformatics. 2020 Dec 30;36(Suppl_2):i610-i617 [PMID: 33381839]
  7. Nat Comput Sci. 2022 Jun;2(6):399-408 [PMID: 38177586]
  8. Genome Biol. 2022 Dec 13;23(1):256 [PMID: 36514162]
  9. Lancet Oncol. 2020 Feb;21(2):222-232 [PMID: 31926806]
  10. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35753702]
  11. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36410733]
  12. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  13. Nucleic Acids Res. 2017 Sep 29;45(17):e156 [PMID: 28973464]
  14. PLoS One. 2022 Jan 24;17(1):e0262717 [PMID: 35073334]
  15. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  16. Science. 2019 Mar 29;363(6434):1463-1467 [PMID: 30923225]
  17. Bioinformatics. 2023 Jan 1;39(1): [PMID: 36515467]
  18. Nat Biotechnol. 2022 Apr;40(4):476-479 [PMID: 34845373]
  19. Nat Biotechnol. 2022 Jan;40(1):121-130 [PMID: 34462589]
  20. Mol Syst Biol. 2021 Jun;17(6):e10108 [PMID: 34057817]
  21. Nat Commun. 2019 Jan 23;10(1):390 [PMID: 30674886]
  22. Genome Med. 2024 Jan 12;16(1):12 [PMID: 38217035]
  23. Nat Methods. 2018 Apr;15(4):233-234 [PMID: 30100822]
  24. Commun Biol. 2020 Oct 9;3(1):565 [PMID: 33037292]
  25. Comput Struct Biotechnol J. 2023 Nov 30;23:106-128 [PMID: 38089467]
  26. Mater Sci Eng C Mater Biol Appl. 2016 Nov 1;68:890-903 [PMID: 27524092]
  27. Nat Biotechnol. 2021 Nov;39(11):1375-1384 [PMID: 34083791]
  28. Bioessays. 2020 Oct;42(10):e1900221 [PMID: 32363691]
  29. Comput Biol Med. 2023 Sep 9;166:107440 [PMID: 37738898]
  30. Science. 2018 Apr 13;360(6385):176-182 [PMID: 29545511]
  31. Mol Syst Biol. 2023 Jun 12;19(6):e11517 [PMID: 37154091]
  32. Nat Methods. 2014 Apr;11(4):360-1 [PMID: 24681720]
  33. Nat Biotechnol. 2023 Aug;41(8):1085-1088 [PMID: 36604544]
  34. Nature. 2021 Aug;596(7871):211-220 [PMID: 34381231]
  35. Nat Methods. 2020 Feb;17(2):193-200 [PMID: 31988518]
  36. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  37. Nat Methods. 2018 Nov;15(11):932-935 [PMID: 30377364]
  38. Nat Commun. 2022 Apr 29;13(1):2339 [PMID: 35487922]
  39. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  40. Science. 2018 Jul 27;361(6400): [PMID: 29930089]
  41. Brief Bioinform. 2023 Sep 20;24(5): [PMID: 37544658]
  42. Genome Biol. 2022 May 18;23(1):118 [PMID: 35585605]
  43. PLoS Comput Biol. 2019 Nov 22;15(11):e1007509 [PMID: 31756191]
  44. Nat Biotechnol. 2018 Oct 29;: [PMID: 30371680]
  45. Methods Mol Biol. 2023;2584:269-292 [PMID: 36495456]
  46. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  47. Cancers (Basel). 2021 Sep 28;13(19): [PMID: 34638322]
  48. Nat Biotechnol. 2022 May;40(5):661-671 [PMID: 35027729]
  49. Cell. 2019 Jun 13;177(7):1873-1887.e17 [PMID: 31178122]
  50. Comput Struct Biotechnol J. 2022 Aug 24;20:4600-4617 [PMID: 36090815]
  51. Nat Methods. 2018 Dec;15(12):1053-1058 [PMID: 30504886]
  52. Genome Biol. 2017 May 8;18(1):84 [PMID: 28482897]
  53. Nat Methods. 2022 Jun;19(6):662-670 [PMID: 35577954]
  54. Nat Commun. 2023 Dec 19;14(1):8353 [PMID: 38114474]
  55. Nucleic Acids Res. 2022 Jul 8;50(12):e72 [PMID: 35349708]
  56. Nat Methods. 2021 Nov;18(11):1352-1362 [PMID: 34711971]
  57. Mol Cell. 2019 Jul 11;75(1):7-12 [PMID: 31299208]
  58. Nat Commun. 2023 Nov 25;14(1):7739 [PMID: 38007580]
  59. Nat Commun. 2017 May 05;8:15081 [PMID: 28474673]
  60. Comput Struct Biotechnol J. 2020 Jun 12;18:1429-1439 [PMID: 32637041]
  61. Genome Res. 2021 Oct;31(10):1753-1766 [PMID: 34035047]
  62. Nat Methods. 2018 May;15(5):339-342 [PMID: 29553578]
  63. Nat Cell Biol. 2023 Feb;25(2):337-350 [PMID: 36732632]
  64. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  65. Nat Methods. 2021 Jan;18(1):100-106 [PMID: 33318659]
  66. Nat Neurosci. 2021 Mar;24(3):425-436 [PMID: 33558695]
  67. Nat Biotechnol. 2022 Sep;40(9):1360-1369 [PMID: 35449415]
  68. Nat Methods. 2019 Aug;16(8):715-721 [PMID: 31363220]
  69. Nature. 2022 Sep;609(7926):375-383 [PMID: 35978191]
  70. Science. 1996 Nov 8;274(5289):998-1001 [PMID: 8875945]
  71. Nat Biotechnol. 2022 Oct;40(10):1458-1466 [PMID: 35501393]
  72. Bioinformatics. 2020 Apr 1;36(7):2293-2294 [PMID: 31808789]
  73. Nucleic Acids Res. 2020 Oct 9;48(18):e107 [PMID: 32955565]
  74. J Mol Cell Biol. 2021 Feb 15;12(11):906-908 [PMID: 32573704]
  75. Nat Methods. 2021 Nov;18(11):1342-1351 [PMID: 34711970]
  76. Genome Biol. 2022 Oct 17;23(1):218 [PMID: 36253792]
  77. Genome Biol. 2021 Mar 8;22(1):78 [PMID: 33685491]
  78. Comput Struct Biotechnol J. 2021 Jul 01;19:3829-3841 [PMID: 34285782]
  79. BMC Bioinformatics. 2021 Aug 9;22(1):397 [PMID: 34372758]
  80. Genome Biol. 2023 Oct 19;24(1):235 [PMID: 37858204]
  81. Breast Cancer Res. 2018 Aug 9;20(1):94 [PMID: 30092822]
  82. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33480403]
  83. Nat Commun. 2022 Apr 1;13(1):1739 [PMID: 35365632]
  84. Nat Biotechnol. 2022 Mar;40(3):345-354 [PMID: 34650268]
  85. Nat Commun. 2022 Sep 19;13(1):5488 [PMID: 36123336]
  86. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  87. Nat Biomed Eng. 2020 Aug;4(8):827-834 [PMID: 32572199]
  88. Genome Biol. 2023 Sep 18;24(1):209 [PMID: 37723583]
  89. Nat Methods. 2021 Jan;18(1):15-18 [PMID: 33408402]
  90. Nucleic Acids Res. 2021 Jun 4;49(10):e55 [PMID: 33619564]
  91. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34849574]
  92. Nat Methods. 2019 Sep;16(9):875-878 [PMID: 31471617]
  93. Nat Commun. 2020 May 11;11(1):2338 [PMID: 32393754]
  94. Bioinformatics. 2018 Aug 15;34(16):2870-2878 [PMID: 29608657]
  95. J Transl Med. 2023 May 18;21(1):330 [PMID: 37202762]
  96. Nat Commun. 2023 Mar 1;14(1):1155 [PMID: 36859400]
  97. Nat Methods. 2018 May;15(5):343-346 [PMID: 29553579]
  98. Nat Biotechnol. 2022 Apr;40(4):517-526 [PMID: 33603203]
  99. Nat Protoc. 2020 Apr;15(4):1484-1506 [PMID: 32103204]
  100. Sci Rep. 2022 Mar 8;12(1):4133 [PMID: 35260632]
  101. Immunol Rev. 2011 Nov;244(1):99-114 [PMID: 22017434]
  102. Genome Biol. 2022 Mar 25;23(1):83 [PMID: 35337374]
  103. Nat Rev Genet. 2015 Jan;16(1):57-66 [PMID: 25446315]
  104. Cell. 2022 May 12;185(10):1777-1792.e21 [PMID: 35512705]
  105. Genome Biol. 2021 May 10;22(1):145 [PMID: 33971932]
  106. Mol Omics. 2023 Feb 20;19(2):162-173 [PMID: 36562244]
  107. Nat Methods. 2023 Aug;20(8):1222-1231 [PMID: 37386189]

Grants

  1. /UNSW Scientia Program Fellowship
  2. DE220101210/Australian Research Council Discovery Early Career Researcher Award

MeSH Term

Deep Learning
Algorithms
Databases, Factual
Gene Expression Profiling
Machine Learning

Word Cloud

Created with Highcharts 10.0.0SRTlearninggeneexpressiondeepresolvedintricatecomprehensivehistologydataanalysistranscriptomicsspatiallikemodelschallengesscientificcommunityavenuesspatiallyin-depthSpatiallypioneeringmethodsimultaneouslystudyingmorphologicalcontextssingle-cellprecisionDataemergingmultifacetedpresentingresearchersmatricesprecisedetailsvisualsrichdatasetsunfortunatelyrendermanyconventionalmethodstraditionalmachinestatisticalineffectiveuniqueposedspecializednatureledexploresophisticatedanalyticalRecenttrendsindicateincreasingreliancealgorithmsespeciallyareasclusteringidentificationvariablegenesalignmenttasksmanuscriptproviderigorouscritiqueadvancedmethodologiesprobingmeritslimitationsrefinementunderscoresrecentinnovationstailoredpromisingremainssubstantialpotentialenhancementcrucialareademandsattentiondevelopmentcanincorporatebiologicalnuancesphylogeny-awareprocessingminusculeimagesegmentsFurthermoreaddressingeliminationbatcheffectsperfectingnormalizationtechniquescounteringoverdispersionzeroinflationpatternsseenpivotalsupportbroaderendeavorsmeticulouslyassembleddirectoryreadilyaccessibledatabaseshopingservefoundationfutureresearchinitiativesDeeptranscriptfomics:technicalviewSpatiallyimagesmultimodal

Similar Articles

Cited By