Predation without direction selectivity.

Jenna Krizan, Xiayingfang Song, Michael J Fitzpatrick, Ning Shen, Florentina Soto, Daniel Kerschensteiner
Author Information
  1. Jenna Krizan: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110.
  2. Xiayingfang Song: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110.
  3. Michael J Fitzpatrick: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  4. Ning Shen: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  5. Florentina Soto: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110. ORCID
  6. Daniel Kerschensteiner: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110. ORCID

Abstract

Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. The source of direction selectivity in the SC is contested, and its contributions to predation have not been tested experimentally. Here, we use type-specific cell removal to show that narrow-field (NF) neurons in the mouse SC guide predation. In vivo recordings demonstrate that direction-selective responses of NF cells are independent of recently reported stimulus-edge effects. Monosynaptic retrograde tracing reveals that NF cells receive synaptic input from direction-selective ganglion cells. When we eliminate direction selectivity in the retina of adult mice, direction-selective responses in the SC, including in NF cells, are lost. However, eliminating retinal direction selectivity does not affect the hunting success or strategies of mice, even when direction selectivity is removed after mice have learned to hunt, and despite abolishing the gaze-stabilizing optokinetic reflex. Thus, our results identify the retinal source of direction selectivity in the SC. They show that NF cells in the SC guide predation, an essential spatial orienting task, independent of their direction selectivity, revealing behavioral multiplexing of complex neural feature preferences and highlighting the importance of feature-selective manipulations for neuroethology.

Keywords

References

  1. Curr Biol. 2015 Mar 30;25(7):831-46 [PMID: 25754638]
  2. J Neurosci. 2020 Jul 15;40(29):5561-5571 [PMID: 32499380]
  3. Nat Neurosci. 2017 Jul;20(7):960-968 [PMID: 28530661]
  4. Trends Neurosci. 1997 Aug;20(8):332-9 [PMID: 9246720]
  5. J Neurosci. 2021 Jan 20;41(3):461-473 [PMID: 33214319]
  6. Cell Metab. 2011 Feb 2;13(2):195-204 [PMID: 21284986]
  7. J Neurosci. 2019 Nov 20;39(47):9360-9368 [PMID: 31570535]
  8. Neuron. 2023 Jun 21;111(12):1876-1886.e5 [PMID: 37086721]
  9. Elife. 2020 Oct 12;9: [PMID: 33044168]
  10. Nat Commun. 2023 Aug 8;14(1):4756 [PMID: 37553352]
  11. Neuron. 2021 May 5;109(9):1527-1539.e4 [PMID: 33784498]
  12. Annu Rev Neurosci. 1984;7:13-41 [PMID: 6370078]
  13. Neuron. 2001 Jun;30(3):771-80 [PMID: 11430810]
  14. PLoS One. 2008 Apr 30;3(4):e2055 [PMID: 18446207]
  15. J Neurosci. 2013 Mar 13;33(11):4642-56 [PMID: 23486939]
  16. Sci Adv. 2020 Nov 18;6(47): [PMID: 33208370]
  17. Curr Biol. 2018 Sep 24;28(18):R1111-R1113 [PMID: 30253154]
  18. Curr Biol. 2019 Dec 2;29(23):4130-4138.e5 [PMID: 31761701]
  19. Cell. 2013 May 9;153(4):896-909 [PMID: 23663785]
  20. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  21. Cell Rep. 2022 Jan 11;38(2):110225 [PMID: 35021080]
  22. Neuron. 2012 Nov 21;76(4):713-20 [PMID: 23177957]
  23. Nature. 2013 Jul 18;499(7458):295-300 [PMID: 23868258]
  24. J Neurosci. 2011 Jun 15;31(24):8760-9 [PMID: 21677160]
  25. J Neurosci Methods. 2007 May 15;162(1-2):8-13 [PMID: 17254636]
  26. J Comp Neurol. 1974 Dec 15;158(4):418-35 [PMID: 4615112]
  27. Cell Rep. 2016 Apr 26;15(4):692-699 [PMID: 27149846]
  28. Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2317218121 [PMID: 38483997]
  29. Neuron. 2016 Jan 6;89(1):177-93 [PMID: 26711119]
  30. Nat Commun. 2022 Sep 5;13(1):5218 [PMID: 36064789]
  31. Nat Neurosci. 2018 Sep;21(9):1281-1289 [PMID: 30127430]
  32. Curr Biol. 2016 Nov 21;26(22):3046-3052 [PMID: 27773567]
  33. Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):27018-27027 [PMID: 31818943]
  34. Nat Neurosci. 2022 May;25(5):659-674 [PMID: 35524141]
  35. J Neurosci. 2014 Oct 1;34(40):13458-71 [PMID: 25274823]
  36. Nat Methods. 2005 Jun;2(6):419-26 [PMID: 15908920]
  37. J Neurosci. 2017 Aug 30;37(35):8428-8443 [PMID: 28760858]
  38. J Neurosci. 2015 Jun 17;35(24):8979-85 [PMID: 26085623]
  39. Vis Neurosci. 1993 Nov-Dec;10(6):997-1005 [PMID: 8257673]
  40. Neuron. 2009 Oct 29;64(2):200-12 [PMID: 19874788]
  41. Science. 2021 Jul 23;373(6553): [PMID: 34437090]
  42. Front Cell Neurosci. 2022 Apr 05;16:857071 [PMID: 35450210]
  43. Neuron. 2010 Apr 15;66(1):15-36 [PMID: 20399726]
  44. Proc Biol Sci. 2020 Sep 9;287(1934):20201189 [PMID: 32873203]
  45. J Neurosci. 2017 Feb 1;37(5):1102-1116 [PMID: 27986926]
  46. Nat Protoc. 2019 Jul;14(7):2152-2176 [PMID: 31227823]
  47. Curr Biol. 2018 Sep 24;28(18):2961-2969.e4 [PMID: 30174186]
  48. Elife. 2019 Nov 21;8: [PMID: 31750831]
  49. J Neurosci. 2011 May 25;31(21):7753-62 [PMID: 21613488]
  50. Cell. 2018 May 31;173(6):1343-1355.e24 [PMID: 29856953]
  51. Neuron. 2013 Dec 18;80(6):1368-83 [PMID: 24360541]
  52. J Neurophysiol. 2013 Sep;110(6):1333-45 [PMID: 23803328]
  53. Nat Neurosci. 2017 Apr;20(4):550-558 [PMID: 28192394]
  54. Neuron. 2021 Mar 17;109(6):918-937 [PMID: 33548173]
  55. Neuron. 2009 May 14;62(3):327-34 [PMID: 19447089]

Grants

  1. P30 EY002687/NEI NIH HHS
  2. T32 EY013360/NEI NIH HHS
  3. R01 EY034001/NEI NIH HHS
  4. T32 GM007200/NIGMS NIH HHS
  5. R01 EY027411/NEI NIH HHS
  6. R01 EY026978/NEI NIH HHS

MeSH Term

Mice
Animals
Predatory Behavior
Neurons
Superior Colliculi
Retina
Visual Pathways

Word Cloud

Created with Highcharts 10.0.0directionselectivitycellsSCNFpredationdirection-selectiveneuronsmicesuperiorcolliculuscomplexpreferencesincludingsourceshownarrow-fieldguideresponsesindependentganglionretinaretinalAcrossanimalkingdomvisualreliesmotion-sensingorthologsexhibitstimulusthoughtcriticaltrackingunpredictableescaperoutespreycontestedcontributionstestedexperimentallyusetype-specificcellremovalmousevivorecordingsdemonstraterecentlyreportedstimulus-edgeeffectsMonosynapticretrogradetracingrevealsreceivesynapticinputeliminateadultlostHowevereliminatingaffecthuntingsuccessstrategiesevenremovedlearnedhuntdespiteabolishinggaze-stabilizingoptokineticreflexThusresultsidentifyessentialspatialorientingtaskrevealingbehavioralmultiplexingneuralfeaturehighlightingimportancefeature-selectivemanipulationsneuroethologyPredationwithout

Similar Articles

Cited By