A Structure-Based Allosteric Modulator Design Paradigm.

Mingyu Li, Xiaobin Lan, Xun Lu, Jian Zhang
Author Information
  1. Mingyu Li: College of Pharmacy, Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China.
  2. Xiaobin Lan: College of Pharmacy, Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China.
  3. Xun Lu: College of Pharmacy, Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China.
  4. Jian Zhang: College of Pharmacy, Ningxia Medical University, Yinchuan, NingxiaHui Autonomous Region, China. ORCID

Abstract

Allosteric drugs bound to topologically distal allosteric sites hold a substantial promise in modulating therapeutic targets deemed undruggable at their orthosteric sites. Traditionally, allosteric modulator discovery has predominantly relied on serendipitous high-throughput screening. Nevertheless, the landscape has undergone a transformative shift due to recent advancements in our understanding of allosteric modulation mechanisms, coupled with a significant increase in the accessibility of allosteric structural data. These factors have extensively promoted the development of various computational methodologies, especially for machine-learning approaches, to guide the rational design of structure-based allosteric modulators. We here presented a comprehensive structure-based allosteric modulator design paradigm encompassing 3 critical stages: drug target acquisition, allosteric binding site, and modulator discovery. The recent advances in computational methods in each stage are encapsulated. Furthermore, we delve into analyzing the successes and obstacles encountered in the rational design of allosteric modulators. The structure-based allosteric modulator design paradigm holds immense potential for the rational design of allosteric modulators. We hope that this review would heighten awareness of the use of structure-based computational methodologies in advancing the field of allosteric drug discovery.

References

  1. Bioinformatics. 2016 May 15;32(10):1574-6 [PMID: 26803160]
  2. Neuron. 2018 Sep 19;99(6):1129-1143 [PMID: 30236283]
  3. Bioinformatics. 2013 Sep 15;29(18):2357-9 [PMID: 23842804]
  4. Nat Med. 2023 Jun;29(6):1292-1295 [PMID: 37264208]
  5. Nucleic Acids Res. 2016 Jan 4;44(D1):D527-35 [PMID: 26365237]
  6. Chem Rev. 2010 Mar 10;110(3):1463-97 [PMID: 19785456]
  7. Drug Discov Today. 2020 Jan;25(1):177-184 [PMID: 31634592]
  8. Nature. 2014 Jul 31;511(7511):557-62 [PMID: 25042998]
  9. Bioinformatics. 2017 Dec 15;33(24):3996-3998 [PMID: 29106449]
  10. Nucleic Acids Res. 2019 Jan 8;47(D1):D520-D528 [PMID: 30357364]
  11. Commun Biol. 2020 Oct 27;3(1):618 [PMID: 33110179]
  12. Comput Struct Biotechnol J. 2020 Jun 18;18:1577-1586 [PMID: 32637054]
  13. Science. 2023 Mar 17;379(6637):1123-1130 [PMID: 36927031]
  14. Biomolecules. 2021 Jun 11;11(6): [PMID: 34208096]
  15. Mol Pharm. 2019 Oct 7;16(10):4282-4291 [PMID: 31437001]
  16. Nat Chem Biol. 2018 Dec;14(12):1118-1126 [PMID: 30374165]
  17. J Phys Chem B. 2021 Jan 14;125(1):101-114 [PMID: 33369425]
  18. Cell. 2013 Apr 11;153(2):293-305 [PMID: 23582321]
  19. Med Res Rev. 2019 Nov;39(6):2314-2342 [PMID: 30957264]
  20. Chem Biol Drug Des. 2018 Apr;91(4):845-853 [PMID: 29250934]
  21. J Chem Inf Model. 2016 Sep 26;56(9):1725-33 [PMID: 27580047]
  22. J Chem Inf Model. 2017 Sep 25;57(9):2358-2363 [PMID: 28825477]
  23. Nucleic Acids Res. 2018 Jul 2;46(W1):W451-W458 [PMID: 29757429]
  24. J Med Chem. 2014 Oct 23;57(20):8530-9 [PMID: 25275946]
  25. Science. 2021 Aug 20;373(6557):871-876 [PMID: 34282049]
  26. Nucleic Acids Res. 2011 Jan;39(Database issue):D663-9 [PMID: 21051350]
  27. J Mol Biol. 2016 Feb 22;428(4):709-719 [PMID: 26854760]
  28. Nucleic Acids Res. 2019 Jul 2;47(W1):W345-W349 [PMID: 31114880]
  29. Proteins. 2022 Nov;90(11):1873-1885 [PMID: 35510704]
  30. J Mol Biol. 2019 Sep 6;431(19):3933-3942 [PMID: 31306666]
  31. J Med Chem. 2021 Dec 23;64(24):17728-17743 [PMID: 34878270]
  32. J Med Chem. 2020 Aug 27;63(16):8738-8748 [PMID: 31469557]
  33. Acc Chem Res. 2017 Feb 21;50(2):302-309 [PMID: 28182403]
  34. Trends Biochem Sci. 2011 Jan;36(1):39-46 [PMID: 20729089]
  35. Diabetes Obes Metab. 2017 Sep;19 Suppl 1:4-21 [PMID: 28880476]
  36. PLoS Comput Biol. 2018 Jun 18;14(6):e1006228 [PMID: 29912863]
  37. AAPS J. 2017 Jul;19(4):1235-1248 [PMID: 28560482]
  38. J Chem Theory Comput. 2018 Jun 12;14(6):3321-3331 [PMID: 29768914]
  39. J Phys Chem B. 2015 Jan 22;119(3):1002-16 [PMID: 25299356]
  40. Nature. 2016 Jul 7;535(7610):148-52 [PMID: 27362227]
  41. Nucleic Acids Res. 2023 Jan 6;51(D1):D345-D351 [PMID: 36169226]
  42. Nat Commun. 2023 Mar 1;14(1):1177 [PMID: 36859488]
  43. J Mol Biol. 2022 Sep 15;434(17):167481 [PMID: 35131258]
  44. Structure. 2009 Aug 12;17(8):1042-50 [PMID: 19679084]
  45. Bioinformatics. 2015 Aug 1;31(15):2598-600 [PMID: 25810427]
  46. Chem Rev. 2016 Jun 8;116(11):6516-51 [PMID: 26807783]
  47. Nature. 2019 Nov;575(7781):217-223 [PMID: 31666701]
  48. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  49. Drug Discov Today. 2018 Feb;23(2):359-365 [PMID: 29030241]
  50. Trends Pharmacol Sci. 2020 May;41(5):336-348 [PMID: 32171554]
  51. J Chem Inf Model. 2018 Sep 24;58(9):2024-2032 [PMID: 30107728]
  52. Bioinformatics. 2014 May 1;30(9):1314-5 [PMID: 24413526]
  53. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  54. Nucleic Acids Res. 2020 Jan 8;48(D1):D394-D401 [PMID: 31665428]
  55. Mol Pharm. 2019 Jun 3;16(6):2605-2615 [PMID: 31013097]
  56. Cell Chem Biol. 2016 Oct 20;23(10):1193-1205 [PMID: 27693059]
  57. J Med Chem. 2019 Jul 25;62(14):6405-6421 [PMID: 30817889]
  58. Trends Biochem Sci. 2008 Sep;33(9):420-5 [PMID: 18706817]
  59. Nucleic Acids Res. 2014 Jan;42(Database issue):D510-6 [PMID: 24293647]
  60. Chem Rev. 2016 Jun 8;116(11):6707-41 [PMID: 26882314]
  61. Nature. 2015 Nov 26;527(7579):477-83 [PMID: 26550826]
  62. Nat Rev Drug Discov. 2002 Sep;1(9):727-30 [PMID: 12209152]
  63. Trends Pharmacol Sci. 2011 Dec;32(12):686-93 [PMID: 21925743]
  64. Nature. 2016 May 25;534(7605):129-32 [PMID: 27251290]
  65. Chem Rev. 2016 Jun 8;116(11):6607-65 [PMID: 26815308]
  66. J Chem Inf Model. 2023 Apr 24;63(8):2456-2468 [PMID: 37057817]
  67. Acc Chem Res. 2020 Mar 17;53(3):654-661 [PMID: 32134250]
  68. J Chem Inf Model. 2023 Mar 27;63(6):1656-1667 [PMID: 36897766]
  69. Structure. 2016 May 3;24(5):826-837 [PMID: 27066750]
  70. Nucleic Acids Res. 2023 Jul 5;51(W1):W33-W38 [PMID: 37070199]
  71. Nucleic Acids Res. 2023 Jul 5;51(W1):W129-W133 [PMID: 37078611]
  72. Drug Discov Today. 2023 Jun;28(6):103551 [PMID: 36907321]
  73. Nucleic Acids Res. 2023 Jul 5;51(W1):W427-W431 [PMID: 37102691]
  74. BMC Bioinformatics. 2015 Oct 23;16:335 [PMID: 26493317]
  75. Chem Sci. 2020 Nov 2;12(1):464-476 [PMID: 34163609]
  76. Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16937-42 [PMID: 25385614]
  77. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3416-E3425 [PMID: 29581267]
  78. Trends Pharmacol Sci. 2016 Jan;37(1):47-61 [PMID: 26576830]
  79. Nucleic Acids Res. 2019 Jul 2;47(W1):W315-W321 [PMID: 31069394]
  80. Am J Hum Genet. 2017 Jan 5;100(1):5-20 [PMID: 27939638]
  81. Pharmacol Rev. 2019 Jan;71(1):1-19 [PMID: 30545954]
  82. Cells. 2022 Mar 07;11(5): [PMID: 35269537]
  83. Acta Pharm Sin B. 2022 Feb;12(2):876-889 [PMID: 35256952]
  84. J Mol Biol. 2023 Jul 15;435(14):168141 [PMID: 37356903]
  85. J Phys Chem Lett. 2021 Jun 10;12(22):5404-5412 [PMID: 34080881]
  86. PLoS Comput Biol. 2016 Mar 03;12(3):e1004678 [PMID: 26939022]
  87. J Mol Biol. 2022 Sep 15;434(17):167692 [PMID: 35738428]
  88. Nat Rev Cancer. 2017 Aug;17(8):502-508 [PMID: 28643779]
  89. J Med Chem. 2019 Jan 10;62(1):266-275 [PMID: 29688708]
  90. Pharmacol Ther. 2018 Nov;191:74-91 [PMID: 29933035]
  91. Nucleic Acids Res. 2020 Jul 2;48(W1):W116-W124 [PMID: 32392302]
  92. J Chem Inf Model. 2019 Aug 26;59(8):3353-3358 [PMID: 31265282]
  93. Nat Rev Drug Discov. 2013 Aug;12(8):630-44 [PMID: 23903222]
  94. J Chem Theory Comput. 2015 Mar 10;11(3):1292-307 [PMID: 26579775]
  95. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9 [PMID: 25730859]
  96. Nucleic Acids Res. 2019 Jan 8;47(D1):D265-D270 [PMID: 30365033]
  97. J Cheminform. 2018 Aug 14;10(1):39 [PMID: 30109435]

Word Cloud

Created with Highcharts 10.0.0allostericdesignmodulatorstructure-baseddiscoverycomputationalrationalmodulatorsAllostericsitesrecentmethodologiesparadigmdrugdrugsboundtopologicallydistalholdsubstantialpromisemodulatingtherapeutictargetsdeemedundruggableorthostericTraditionallypredominantlyreliedserendipitoushigh-throughputscreeningNeverthelesslandscapeundergonetransformativeshiftdueadvancementsunderstandingmodulationmechanismscoupledsignificantincreaseaccessibilitystructuraldatafactorsextensivelypromoteddevelopmentvariousespeciallymachine-learningapproachesguidepresentedcomprehensiveencompassing3criticalstages:targetacquisitionbindingsiteadvancesmethodsstageencapsulatedFurthermoredelveanalyzingsuccessesobstaclesencounteredholdsimmensepotentialhopereviewheightenawarenessuseadvancingfieldStructure-BasedModulatorDesignParadigm

Similar Articles

Cited By