Probing Patient Messages Enhanced by Natural Language Processing: A Top-Down Message Corpus Analysis.

George Mastorakos, Aditya Khurana, Ming Huang, Sunyang Fu, Ahmad P Tafti, Jungwei Fan, Hongfang Liu
Author Information
  1. George Mastorakos: Mayo Clinic Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA. ORCID
  2. Aditya Khurana: Mayo Clinic Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, USA. ORCID
  3. Ming Huang: Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA. ORCID
  4. Sunyang Fu: Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA. ORCID
  5. Ahmad P Tafti: Computer Science Department, University of Southern Maine, Portland, Maine, USA. ORCID
  6. Jungwei Fan: Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA. ORCID
  7. Hongfang Liu: Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA.

Abstract

. Patients increasingly use asynchronous communication platforms to converse with care teams. Natural language processing (NLP) to classify content and automate triage of these messages has great potential to enhance clinical efficiency. We characterize the contents of a corpus of portal messages generated by patients using NLP methods. We aim to demonstrate descriptive analyses of patient text that can contribute to the development of future sophisticated NLP applications. . We collected approximately 3,000 portal messages from the cardiology, dermatology, and gastroenterology departments at Mayo Clinic. After labeling these messages as either Active Symptom, Logistical, Prescription, or Update, we used NER (named entity recognition) to identify medical concepts based on the UMLS library. We hierarchically analyzed the distribution of these messages in terms of departments, message types, medical concepts, and keywords therewithin. . Active Symptom and Logistical content types comprised approximately 67% of the message cohort. The "Findings" medical concept had the largest number of keywords across all groupings of content types and departments. "Anatomical Sites" and "Disorders" keywords were more prevalent in Active Symptom messages, while "Drugs" keywords were most prevalent in Prescription messages. Logistical messages tended to have the lower proportions of "Anatomical Sites,", "Disorders,", "Drugs,", and "Findings" keywords when compared to other message content types. . This descriptive corpus analysis sheds light on the content and foci of portal messages. The insight into the content and differences among message themes can inform the development of more robust NLP models.

References

  1. J Biomed Inform. 2001 Oct;34(5):301-10 [PMID: 12123149]
  2. J Vet Diagn Invest. 2018 Jan;30(1):17-25 [PMID: 29034813]
  3. J Biomed Inform. 2017 Oct;74:59-70 [PMID: 28864104]
  4. Appl Clin Inform. 2018 Oct;9(4):860-868 [PMID: 30517969]
  5. J Am Med Inform Assoc. 2008 Jul-Aug;15(4):496-505 [PMID: 18436906]
  6. Methods Inf Med. 1993 Aug;32(4):281-91 [PMID: 8412823]
  7. J Biomed Inform. 2003 Dec;36(6):414-32 [PMID: 14759816]
  8. BMC Med Inform Decis Mak. 2020 Mar 30;20(1):60 [PMID: 32228556]
  9. Telemed J E Health. 2014 Mar;20(3):192-8 [PMID: 24350803]
  10. J Am Med Inform Assoc. 2005 May-Jun;12(3):296-8 [PMID: 15684123]
  11. J Am Med Inform Assoc. 2017 Sep 01;24(5):942-949 [PMID: 28371896]
  12. JMIR Med Inform. 2019 Apr 21;7(2):e12109 [PMID: 31066686]
  13. J Healthc Inform Res. 2019 Jan 28;3(2):200-219 [PMID: 35415427]
  14. AMIA Annu Symp Proc. 2012;2012:568-76 [PMID: 23304329]
  15. J Am Med Inform Assoc. 2018 Nov 1;25(11):1444-1451 [PMID: 30380083]
  16. J Med Internet Res. 2018 Jul 11;20(7):e218 [PMID: 29997107]
  17. JMIR Med Inform. 2020 Jul 8;8(7):e16521 [PMID: 32673238]
  18. J Am Med Inform Assoc. 2006 Jan-Feb;13(1):91-5 [PMID: 16221943]
  19. J Biomed Inform. 2020 Sep;109:103526 [PMID: 32768446]
  20. J Natl Cancer Inst Monogr. 2013 Dec;2013(47):195-8 [PMID: 24395991]
  21. Stud Health Technol Inform. 2019 Aug 21;264:198-202 [PMID: 31437913]
  22. J Gen Intern Med. 2008 Jan;23 Suppl 1:20-6 [PMID: 18095039]
  23. J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7 [PMID: 21709161]
  24. JAMIA Open. 2020 Apr 13;3(2):146-150 [PMID: 32734151]

Word Cloud

Created with Highcharts 10.0.0messagescontentkeywordsNLPmessagetypesportaldepartmentsActiveSymptomLogisticalmedical"NaturalcorpusdescriptivecandevelopmentapproximatelyPrescriptionconcepts"Findings""AnatomicalprevalentPatientsincreasinglyuseasynchronouscommunicationplatformsconversecareteamslanguageprocessingclassifyautomatetriagegreatpotentialenhanceclinicalefficiencycharacterizecontentsgeneratedpatientsusingmethodsaimdemonstrateanalysespatienttextcontributefuturesophisticatedapplicationscollected3000cardiologydermatologygastroenterologyMayoCliniclabelingeitherUpdateusedNERnamedentityrecognitionidentifybasedUMLSlibraryhierarchicallyanalyzeddistributiontermstherewithincomprised67%cohortconceptlargestnumberacrossgroupingsSites""Disorders""Drugs"tendedlowerproportionsSites"Disorders"DrugscomparedanalysisshedslightfociinsightdifferencesamongthemesinformrobustmodelsProbingPatientMessagesEnhancedLanguageProcessing:Top-DownMessageCorpusAnalysis

Similar Articles

Cited By