Evolutionary graph theory beyond pairwise interactions: Higher-order network motifs shape times to fixation in structured populations.

Yang Ping Kuo, Oana Carja
Author Information
  1. Yang Ping Kuo: Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America. ORCID
  2. Oana Carja: Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America. ORCID

Abstract

To design population topologies that can accelerate rates of solution discovery in directed evolution problems or for evolutionary optimization applications, we must first systematically understand how population structure shapes evolutionary outcome. Using the mathematical formalism of evolutionary graph theory, recent studies have shown how to topologically build networks of population interaction that increase probabilities of fixation of beneficial mutations, at the expense, however, of longer fixation times, which can slow down rates of evolution, under elevated mutation rate. Here we find that moving beyond dyadic interactions in population graphs is fundamental to explain the trade-offs between probabilities and times to fixation of new mutants in the population. We show that higher-order motifs, and in particular three-node structures, allow the tuning of times to fixation, without changes in probabilities of fixation. This gives a near-continuous control over achieving solutions that allow for a wide range of times to fixation. We apply our algorithms and analytic results to two evolutionary optimization problems and show that the rate of solution discovery can be tuned near continuously by adjusting the higher-order topology of the population. We show that the effects of population structure on the rate of evolution critically depend on the optimization landscape and find that decelerators, with longer times to fixation of new mutants, are able to reach the optimal solutions faster than accelerators in complex solution spaces. Our results highlight that no one population topology fits all optimization applications, and we provide analytic and computational tools that allow for the design of networks suitable for each specific task.

References

  1. Nat Commun. 2021 Jun 29;12(1):4009 [PMID: 34188036]
  2. Science. 1985 Jul 19;229(4710):242-7 [PMID: 2990046]
  3. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  4. Phys Rev E. 2019 Apr;99(4-1):042304 [PMID: 31108590]
  5. Sci Rep. 2021 Sep 9;11(1):17979 [PMID: 34504152]
  6. Phys Rev E. 2017 Feb;95(2-1):022407 [PMID: 28297871]
  7. Science. 2016 Jul 8;353(6295):163-6 [PMID: 27387949]
  8. Phys Rev Lett. 2002 Nov 11;89(20):208701 [PMID: 12443515]
  9. Methods Mol Biol. 2010;634:103-9 [PMID: 20676978]
  10. Nat Biotechnol. 1996 Apr;14(4):458-67 [PMID: 9630920]
  11. Phys Rev Lett. 2005 May 6;94(17):178701 [PMID: 15904343]
  12. Sci Rep. 2014 May 22;4:5034 [PMID: 24849192]
  13. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]
  14. Nat Hum Behav. 2021 May;5(5):586-595 [PMID: 33398148]
  15. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  16. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  17. Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):7530-5 [PMID: 25964348]
  18. Evolution. 1981 May;35(3):477-488 [PMID: 28563585]
  19. Theor Popul Biol. 1970 Nov;1(3):273-306 [PMID: 5527634]
  20. Nat Commun. 2014 Mar 06;5:3409 [PMID: 24598979]
  21. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4193-7 [PMID: 3889923]
  22. Nat Commun. 2024 May 31;15(1):4666 [PMID: 38821923]
  23. Proc Biol Sci. 2013 May 15;280(1762):20130211 [PMID: 23677339]
  24. Genetics. 1962 Jun;47:713-9 [PMID: 14456043]
  25. Bull Math Biol. 2006 Nov;68(8):1923-44 [PMID: 17086490]
  26. Phys Rev Lett. 2021 Nov 19;127(21):218102 [PMID: 34860074]
  27. Genetica. 1998;102-103(1-6):127-44 [PMID: 9720276]
  28. J Mol Biol. 1997 Sep 26;272(3):336-47 [PMID: 9325094]
  29. Biosystems. 2016 Dec;150:87-91 [PMID: 27555086]
  30. Commun Biol. 2018 Jun 14;1:71 [PMID: 30271952]
  31. J R Soc Interface. 2023 Mar;20(200):20220769 [PMID: 36919418]
  32. Commun Biol. 2019 Apr 23;2:137 [PMID: 31044162]
  33. J R Soc Interface. 2011 Jan 6;8(54):67-73 [PMID: 20538755]
  34. Phys Rev E. 2019 Jul;100(1-1):012408 [PMID: 31499887]
  35. Mol Biotechnol. 1997 Apr;7(2):189-95 [PMID: 9219234]
  36. Biotechnol Bioeng. 2004 Jun 20;86(6):622-7 [PMID: 15137072]
  37. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  38. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042707 [PMID: 26565272]
  39. Phys Rev Lett. 2007 Mar 2;98(9):098103 [PMID: 17359200]

Grants

  1. R35 GM147445/NIGMS NIH HHS
  2. T32 EB009403/NIBIB NIH HHS

MeSH Term

Biological Evolution
Mutation Rate
Mutation
Algorithms
Mathematics

Word Cloud

Created with Highcharts 10.0.0populationfixationtimesevolutionaryoptimizationcansolutionevolutionprobabilitiesrateshowallowdesignratesdiscoveryproblemsapplicationsstructuregraphtheorynetworkslongerfindbeyondnewmutantshigher-ordermotifssolutionsanalyticresultstopologytopologiesacceleratedirectedmustfirstsystematicallyunderstandshapesoutcomeUsingmathematicalformalismrecentstudiesshowntopologicallybuildinteractionincreasebeneficialmutationsexpensehoweverslowelevatedmutationmovingdyadicinteractionsgraphsfundamentalexplaintrade-offsparticularthree-nodestructurestuningwithoutchangesgivesnear-continuouscontrolachievingwiderangeapplyalgorithmstwotunednearcontinuouslyadjustingeffectscriticallydependlandscapedeceleratorsablereachoptimalfasteracceleratorscomplexspaceshighlightonefitsprovidecomputationaltoolssuitablespecifictaskEvolutionarypairwiseinteractions:Higher-ordernetworkshapestructuredpopulations

Similar Articles

Cited By (6)