Plant-plant communication in Camellia japonica and C. rusticana via volatiles.

Yusuke Sakurai, Satomi Ishizaki
Author Information
  1. Yusuke Sakurai: Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan.
  2. Satomi Ishizaki: Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan. ishizaki@env.sc.niigata-u.ac.jp. ORCID

Abstract

Plants emit volatile compounds when they are subjected to herbivorous, pathogenic, or artificial damages. Both the damaged plant and the neighboring intact plants induce resistance when they receive these volatiles, a phenomenon known as plant-plant communication. However, field observations of this phenomenon are limited. To understand the nature of plant-plant communication, we collected information about intra- and inter-plant signaling via volatiles in Camellia japonica and C. rusticana under natural conditions. We exposed intact branches of damaged plant (intra-plant) or neighboring plant (inter-plant) to artificially damaged plant volatiles (ADPVs). Leaf damage reduced in ADPVs-exposed branches in the neighboring plants compared to branches that were exposed to volatiles from intact leaves, thus, indicating that inter-plant signaling occur by the emission of volatiles from damaged leaves. We also conducted an air-transfer experiment wherein the headspace air of the damaged branch was transferred to the headspace of intact branches. Leaf damage reduced on the ADPVs-transferred branch compared to the control branch. The effect of volatiles on damage reduction lasted for three months. Our results indicate that ADPVs in Camellia species contain cues that induce resistance in neighboring plants. Our findings improve understanding of plant defense strategies that may be used in horticulture and agriculture.

References

  1. Am Nat. 2010 Sep;176(3):381-4 [PMID: 20635861]
  2. Plant Cell Physiol. 2022 Oct 31;63(10):1344-1355 [PMID: 35866611]
  3. J Exp Bot. 2022 Jan 13;73(2):511-528 [PMID: 34791168]
  4. Annu Rev Entomol. 2018 Jan 7;63:433-452 [PMID: 29324043]
  5. J Chem Ecol. 2005 Oct;31(10):2231-42 [PMID: 16195841]
  6. Trends Ecol Evol. 2010 Mar;25(3):137-44 [PMID: 19837476]
  7. Oecologia. 2013 Jul;172(3):869-75 [PMID: 23576105]
  8. Plant J. 1998 Dec;16(5):561-9 [PMID: 10036774]
  9. Ecol Evol. 2021 May 02;11(12):7439-7447 [PMID: 34188825]
  10. Curr Opin Plant Biol. 2002 Aug;5(4):351-4 [PMID: 12179970]
  11. Ecol Lett. 2007 Jun;10(6):490-8 [PMID: 17498148]
  12. Plants (Basel). 2021 Mar 04;10(3): [PMID: 33806670]
  13. Ecology. 2006 Apr;87(4):922-30 [PMID: 16676536]
  14. PLoS One. 2018 May 2;13(5):e0195646 [PMID: 29718944]
  15. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5467-72 [PMID: 17360371]
  16. Trends Plant Sci. 2012 May;17(5):260-70 [PMID: 22498450]
  17. Ecol Evol. 2021 Aug 02;11(18):12445-12452 [PMID: 34594511]
  18. Oecologia. 2000 Dec;125(4):504-511 [PMID: 28547220]
  19. Ecol Lett. 2014 Jan;17(1):44-52 [PMID: 24165497]
  20. J Chem Ecol. 2017 Apr;43(4):327-338 [PMID: 28280959]
  21. Curr Opin Insect Sci. 2019 Apr;32:110-117 [PMID: 31113622]
  22. J Chem Ecol. 2003 Mar;29(3):763-70 [PMID: 12757332]
  23. Plant Divers. 2020 Dec 30;43(3):216-224 [PMID: 34195506]
  24. J Chem Ecol. 1990 Nov;16(11):3091-118 [PMID: 24263298]
  25. J Chem Ecol. 2009 Feb;35(2):163-75 [PMID: 19159981]
  26. Nature. 2001 Mar 29;410(6828):577-80 [PMID: 11279494]
  27. Plant J. 2018 Dec;96(5):910-920 [PMID: 30156351]
  28. Plant Cell Environ. 2021 Apr;44(4):1165-1177 [PMID: 32996129]
  29. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2393-6 [PMID: 11607168]
  30. Ecol Lett. 2020 Jul;23(7):1097-1106 [PMID: 32314512]
  31. Curr Biol. 2019 Sep 23;29(18):3128-3133.e3 [PMID: 31522939]
  32. Plant Physiol. 2008 Mar;146(3):818-24 [PMID: 18316635]
  33. Proc Biol Sci. 2013 Feb 13;280(1756):20123062 [PMID: 23407838]

MeSH Term

Camellia
Signal Transduction
Plants
Herbivory
Communication
Volatile Organic Compounds

Chemicals

Volatile Organic Compounds

Word Cloud

Created with Highcharts 10.0.0volatilesdamagedplantneighboringintactbranchesplantscommunicationinter-plantCamelliadamagebranchinduceresistancephenomenonplant-plantsignalingviajaponicaCrusticanaexposedADPVsLeafreducedcomparedleavesheadspacePlantsemitvolatilecompoundssubjectedherbivorouspathogenicartificialdamagesreceiveknownHoweverfieldobservationslimitedunderstandnaturecollectedinformationintra-naturalconditionsintra-plantartificiallyADPVs-exposedthusindicatingoccuremissionalsoconductedair-transferexperimentwhereinairtransferredADPVs-transferredcontroleffectreductionlastedthreemonthsresultsindicatespeciescontaincuesfindingsimproveunderstandingdefensestrategiesmayusedhorticultureagriculturePlant-plant

Similar Articles

Cited By