Antarctic fungi produce pigment with antimicrobial and antiparasitic activities.

Sabrina Barros Cavalcante, André Felipe da Silva, Lucas Pradi, Jhuly Wellen Ferreira Lacerda, Tiago Tizziani, Louis Pergaud Sandjo, Lenon Romano Modesto, Ana Claudia Oliveira de Freitas, Mario Steindel, Patricia Hermes Stoco, Rubens Tadeu Delgado Duarte, Diogo Robl
Author Information
  1. Sabrina Barros Cavalcante: Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  2. André Felipe da Silva: Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins (UFT), Gurupi, TO, Brazil.
  3. Lucas Pradi: Department of Chemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  4. Jhuly Wellen Ferreira Lacerda: Department of Chemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  5. Tiago Tizziani: Department of Chemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  6. Louis Pergaud Sandjo: Department of Chemistry, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  7. Lenon Romano Modesto: Centre for Agrarian Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  8. Ana Claudia Oliveira de Freitas: Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  9. Mario Steindel: Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  10. Patricia Hermes Stoco: Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  11. Rubens Tadeu Delgado Duarte: Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
  12. Diogo Robl: Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil. diogo.robl@ufsc.br. ORCID

Abstract

Natural pigments have received special attention from the market and industry as they could overcome the harm to health and the environmental issues caused by synthetic pigments. These pigments are commonly extracted from a wide range of organisms, and when added to products they can alter/add new physical-chemical or biological properties to them. Fungi from extreme environments showed to be a promising source in the search for biomolecules with antimicrobial and antiparasitic potential. This study aimed to isolate fungi from Antarctic soils and screen them for pigment production with antimicrobial and antiparasitic potential, together with other previously isolated strains A total of 52 fungi were isolated from soils in front of the Collins Glacier (Southeast border). Also, 106 filamentous fungi previously isolated from the Collins Glacier (West border) were screened for extracellular pigment production. Five strains were able to produce extracellular pigments and were identified by ITS sequencing as Talaromyces cnidii, Pseudogymnoascus shaanxiensis and Pseudogymnoascus sp. All Pseudogymnoascus spp. (SC04.P3, SC3.P3, SC122.P3 and ACF093) extracts were able to inhibit S. aureus ATCC6538 and two (SC12.P3, SC32.P3) presented activity against Leishmania (L.) infantum, Leishmania amazonensis and Trypanossoma cruzii. Extracts compounds characterization by UPLC-ESI-QToF analysis confirmed the presence of molecules with biological activity such as: Asterric acid, Violaceol, Mollicellin, Psegynamide A, Diorcinol, Thailandolide A. In conclusion, this work showed the potential of Antartic fungal strains from Collins Glacier for bioactive molecules production with activity against Gram positive bacteria and parasitic protozoas.

Keywords

References

  1. Crit Rev Biotechnol. 2021 Sep;41(6):809-826 [PMID: 33622142]
  2. J Ethnopharmacol. 2013 Aug 26;149(1):35-48 [PMID: 23811047]
  3. J Biotechnol. 2022 Sep 10;356:30-41 [PMID: 35868432]
  4. Front Microbiol. 2021 Nov 19;12:713189 [PMID: 34867840]
  5. Nat Prod Res. 2021 Jan;35(2):282-288 [PMID: 31177836]
  6. Braz J Microbiol. 2023 Sep;54(3):1675-1687 [PMID: 37286926]
  7. J Nat Prod. 2021 Apr 23;84(4):986-992 [PMID: 33646775]
  8. Appl Microbiol Biotechnol. 2021 May;105(9):3521-3532 [PMID: 33900423]
  9. Phytother Res. 2005 Jul;19(7):599-604 [PMID: 16161063]
  10. Chem Pharm Bull (Tokyo). 2007 Feb;55(2):304-7 [PMID: 17268106]
  11. Extremophiles. 2017 Mar;21(2):259-269 [PMID: 27900476]
  12. J Antimicrob Chemother. 2022 Nov 25;77(Suppl_2):ii3-ii10 [PMID: 36426673]
  13. J Nat Prod. 2023 Aug 25;86(8):2046-2053 [PMID: 37566707]
  14. Mar Drugs. 2022 Sep 22;20(10): [PMID: 36286417]
  15. Chem Biodivers. 2010 Nov;7(11):2766-70 [PMID: 21072776]
  16. Mar Drugs. 2019 Jul 19;17(7): [PMID: 31331101]
  17. Nat Prod Res. 2021 Dec;35(23):5001-5010 [PMID: 32375511]
  18. J Nat Prod. 2008 Sep;71(9):1643-6 [PMID: 18720971]
  19. J Biotechnol. 2020 Mar 10;311:1-11 [PMID: 32057783]
  20. FEMS Microbiol Ecol. 2012 Nov;82(2):459-71 [PMID: 22671312]
  21. Curr Opin Biotechnol. 2014 Apr;26:56-61 [PMID: 24679259]
  22. Front Microbiol. 2018 Jun 28;9:1374 [PMID: 30002650]
  23. J Fungi (Basel). 2021 Apr 23;7(5): [PMID: 33922407]
  24. J Antibiot (Tokyo). 2015 Nov;68(11):703-6 [PMID: 25944530]
  25. Stud Mycol. 2014 Jun;78:175-341 [PMID: 25492983]
  26. Extremophiles. 2020 May;24(3):367-376 [PMID: 32157393]
  27. Fitoterapia. 2019 Sep;137:104257 [PMID: 31278976]
  28. Fungal Biol Biotechnol. 2017 May 10;4:4 [PMID: 28955473]
  29. Extremophiles. 2020 Jul;24(4):447-473 [PMID: 32488508]
  30. Front Microbiol. 2020 Oct 29;11:572596 [PMID: 33193172]
  31. J Nat Prod. 2013 Apr 26;76(4):547-53 [PMID: 23527875]
  32. Appl Microbiol Biotechnol. 2022 Jun;106(11):4169-4185 [PMID: 35595930]
  33. Fitoterapia. 2018 Sep;129:317-365 [PMID: 29704531]
  34. Org Lett. 2019 May 3;21(9):3114-3118 [PMID: 30990700]
  35. Int J Food Microbiol. 2008 Aug 15;126(1-2):20-3 [PMID: 18538878]
  36. Lett Appl Microbiol. 2018 Jul;67(1):64-71 [PMID: 29604211]
  37. Microorganisms. 2020 Jul 29;8(8): [PMID: 32751125]
  38. J Nat Prod. 2015 Apr 24;78(4):919-23 [PMID: 25732560]
  39. Bioorg Med Chem Lett. 2017 Feb 15;27(4):787-791 [PMID: 28129981]
  40. Mar Drugs. 2023 Apr 10;21(4): [PMID: 37103373]
  41. J Antibiot (Tokyo). 1974 Aug;27(8):587-96 [PMID: 4436144]
  42. J Nat Prod. 2009 Apr;72(4):666-70 [PMID: 19245260]
  43. Mar Drugs. 2021 Mar 22;19(3): [PMID: 33809861]
  44. Chem Biodivers. 2014 Jan;11(1):133-9 [PMID: 24443433]
  45. Mol Biol Evol. 1993 May;10(3):512-26 [PMID: 8336541]
  46. Phytochemistry. 2017 Nov;143:115-123 [PMID: 28803995]
  47. Nature. 2017 Jul 6;547(7661):49-54 [PMID: 28658207]
  48. Microb Ecol. 2021 Jul;82(1):165-172 [PMID: 33161522]
  49. Curr Microbiol. 2021 Jun;78(6):2332-2344 [PMID: 33904974]
  50. Fungal Biol. 2022 Oct;126(10):640-647 [PMID: 36116896]
  51. J Food Sci Technol. 2015 Aug;52(8):4669-78 [PMID: 26243889]

Grants

  1. Scholarship/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  2. Scholarship/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

MeSH Term

Antarctic Regions
Pigments, Biological
Antiparasitic Agents
Anti-Infective Agents
Fungi
Soil Microbiology
Bacteria
Microbial Sensitivity Tests
Animals
Staphylococcus aureus

Chemicals

Pigments, Biological
Antiparasitic Agents
Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0pigmentsP3fungiPseudogymnoascusantimicrobialantiparasiticpotentialAntarcticpigmentproductionisolatedstrainsCollinsGlacieractivitymoleculesNaturalbiologicalshowedsoilspreviouslyborderextracellularableproduceTalaromycesLeishmaniareceivedspecialattentionmarketindustryovercomeharmhealthenvironmentalissuescausedsyntheticcommonlyextractedwiderangeorganismsaddedproductscanalter/addnewphysical-chemicalpropertiesFungiextremeenvironmentspromisingsourcesearchbiomoleculesstudyaimedisolatescreentogethertotal52frontSoutheastAlso106filamentousWestscreenedFiveidentifiedITSsequencingcnidiishaanxiensisspsppSC04SC3SC122ACF093extractsinhibitSaureusATCC6538twoSC12SC32presentedLinfantumamazonensisTrypanossomacruziiExtractscompoundscharacterizationUPLC-ESI-QToFanalysisconfirmedpresenceas:AsterricacidViolaceolMollicellinPsegynamideDiorcinolThailandolideconclusionworkAntarticfungalbioactiveGrampositivebacteriaparasiticprotozoasactivitiesAntimicrobial

Similar Articles

Cited By