Multi-omics analysis reveals promiscuous -glycosyltransferases involved in the diversity of flavonoid glycosides in (Apocynaceae).

Xiaotong Wang, Lan Wu, Wanran Zhang, Shi Qiu, Zhichao Xu, Huihua Wan, Jiang He, Wenting Wang, Mengyue Wang, Qinggang Yin, Yuhua Shi, Ranran Gao, Li Xiang, Weijun Yang
Author Information
  1. Xiaotong Wang: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  2. Lan Wu: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  3. Wanran Zhang: Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China.
  4. Shi Qiu: The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
  5. Zhichao Xu: Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China.
  6. Huihua Wan: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  7. Jiang He: Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China.
  8. Wenting Wang: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  9. Mengyue Wang: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  10. Qinggang Yin: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  11. Yuhua Shi: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  12. Ranran Gao: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  13. Li Xiang: Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
  14. Weijun Yang: Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China.

Abstract

Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. , a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in . A total of 120 flavonoid glycosides, including 21 -, 96 -, and 3 -glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited -glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite -glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in . Our findings provide a valuable genetic resource for further studies on and insights into the metabolic engineering of bioactive flavonoid glycosides.

Keywords

References

  1. Chembiochem. 2016 Jul 1;17(13):1225-8 [PMID: 27238293]
  2. Nat Ecol Evol. 2018 Feb;2(2):352-358 [PMID: 29255303]
  3. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  4. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  5. Arch Pharm Res. 2016 Sep;39(9):1324-34 [PMID: 27522656]
  6. Phytother Res. 2018 Jul;32(7):1181-1210 [PMID: 29575195]
  7. Int J Mol Sci. 2021 Nov 26;22(23): [PMID: 34884627]
  8. Nat Prod Res. 2024 Aug;38(16):2737-2747 [PMID: 37405859]
  9. Plant J. 2019 Dec;100(6):1273-1288 [PMID: 31446648]
  10. Plant Cell Physiol. 2008 Jun;49(6):865-79 [PMID: 18413358]
  11. Angew Chem Int Ed Engl. 2004 Nov 19;43(45):6032-40 [PMID: 15523680]
  12. Plants (Basel). 2022 Nov 18;11(22): [PMID: 36432887]
  13. Nature. 2007 Sep 27;449(7161):463-7 [PMID: 17721507]
  14. J Inorg Biochem. 2017 May;170:117-124 [PMID: 28236787]
  15. BMC Biol. 2020 Jun 18;18(1):63 [PMID: 32552824]
  16. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5618-22 [PMID: 8516309]
  17. Phytochemistry. 2020 Jun;174:112347 [PMID: 32203741]
  18. Arch Biochem Biophys. 2003 Dec 1;420(1):95-102 [PMID: 14622979]
  19. DNA Res. 2022 Feb 27;29(2): [PMID: 35380665]
  20. Mol Plant. 2013 Nov;6(6):1769-80 [PMID: 23702596]
  21. G3 (Bethesda). 2018 Feb 2;8(2):385-391 [PMID: 29237703]
  22. Nat Plants. 2019 Feb;5(2):174-183 [PMID: 30692677]
  23. J Biol Chem. 2001 Feb 9;276(6):4338-43 [PMID: 11042215]
  24. Biotechnol Adv. 2022 Nov;60:108030 [PMID: 36031083]
  25. Planta. 2014 Jun;239(6):1265-79 [PMID: 24647682]
  26. Mol Ecol. 2015 Dec;24(24):6177-87 [PMID: 26547143]
  27. Nature. 2017 Mar 23;543(7646):555-558 [PMID: 28297706]
  28. Nature. 2017 Jun 1;546(7656):148-152 [PMID: 28538728]
  29. Biotechnol Bioeng. 2004 Sep 5;87(5):623-31 [PMID: 15352060]
  30. Appl Microbiol Biotechnol. 2009 Jul;83(5):799-808 [PMID: 19475406]
  31. PLoS One. 2012;7(2):e31708 [PMID: 22348123]
  32. Appl Microbiol Biotechnol. 2020 Aug;104(15):6587-6600 [PMID: 32514754]
  33. Plant J. 2012 Mar;69(6):1030-42 [PMID: 22077743]
  34. Hortic Res. 2021 Apr 1;8(1):64 [PMID: 33790235]
  35. J Agric Food Chem. 2022 Feb 23;70(7):2354-2365 [PMID: 35133826]
  36. Plant J. 2015 May;82(4):680-92 [PMID: 25759247]
  37. J Sep Sci. 2019 Feb;42(3):650-661 [PMID: 30461196]
  38. Plant Cell Physiol. 2015 Jun;56(6):1172-82 [PMID: 25759326]
  39. PeerJ. 2019 Sep 20;7:e7649 [PMID: 31579586]
  40. Curr Opin Chem Biol. 2005 Apr;9(2):195-201 [PMID: 15811805]
  41. Mol Biol Evol. 2015 Jan;32(1):100-8 [PMID: 25246702]
  42. Nat Commun. 2020 Jun 9;11(1):2902 [PMID: 32518223]
  43. Plant J. 2017 Jan;89(1):85-103 [PMID: 27599367]
  44. Science. 2014 Sep 5;345(6201):1181-4 [PMID: 25190796]
  45. Molecules. 2023 Apr 20;28(8): [PMID: 37110833]
  46. Mol Plant. 2023 Apr 3;16(4):643-646 [PMID: 36609142]
  47. Org Lett. 2019 Apr 5;21(7):2241-2245 [PMID: 30848604]
  48. Differentiation. 2015 Jun;89(5):146-55 [PMID: 26299581]
  49. Biomed Pharmacother. 2021 Aug;140:111596 [PMID: 34126315]
  50. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9413-E9422 [PMID: 29078332]
  51. Evid Based Complement Alternat Med. 2022 Jul 5;2022:2993374 [PMID: 35836835]
  52. J Exp Bot. 2016 Apr;67(8):2285-97 [PMID: 26941235]
  53. Life Sci. 2016 Jan 1;144:80-5 [PMID: 26656314]
  54. Nat Commun. 2013;4:1827 [PMID: 23652015]
  55. Proc Biol Sci. 1994 May 23;256(1346):119-24 [PMID: 8029240]

Word Cloud

Created with Highcharts 10.0.0flavonoidglycosidesdiversityFlavonoiddiverseactivitiesApocynaceaeusedfull-lengthtranscriptome-identifiedglycosyltransferasesUGTsfourexhibitedtowardpromiscuouswidespreadplantsgreatinterestowingbiologicaleffectivenesspreventingchronicdiseasesrenownedmedicinalplantfamilycontainsclinicallytreatrheumatoidarthritistraumaticinjuriesHowevermechanismsunderlyingbiosynthesisyetelucidatedstudywidelytargetedmetabolomicssequencingidentifybiosyntheticgenestotal120including21963 -glycosidesannotatedBased24123codingsequences99uridinediphosphatesugar-utilizingclassified14groupsBiochemicalassaysrevealed-glycosyltransferaseactivityapigeninluteolinAmongPfUGT74B4PfUGT92A8highlymultisite-glycosylationconsecutiveglycosylationvariousaglyconesmaysignificantlycontributefindingsprovidevaluablegeneticresourcestudiesinsightsmetabolicengineeringbioactiveMulti-omicsanalysisreveals-glycosyltransferasesinvolvedBiosynthesisglycosideFull-lengthGlycosyltransferaseMetabolomePeriplocaforrestii

Similar Articles

Cited By