PhagoStat a scalable and interpretable end to end framework for efficient quantification of cell phagocytosis in neurodegenerative disease studies.

Mehdi Ounissi, Morwena Latouche, Daniel Racoceanu
Author Information
  1. Mehdi Ounissi: CNRS, Inserm, AP-HP, Inria, Paris Brain Institute-ICM, Sorbonne University, 75013, Paris, France.
  2. Morwena Latouche: Inserm, CNRS, AP-HP, Institut du Cerveau, ICM, Sorbonne Université, 75013, Paris, France.
  3. Daniel Racoceanu: CNRS, Inserm, AP-HP, Inria, Paris Brain Institute-ICM, Sorbonne University, 75013, Paris, France. daniel.racoceanu@sorbonne-universite.fr.

Abstract

Quantifying the phagocytosis of dynamic, unstained cells is essential for evaluating neurodegenerative diseases. However, measuring rapid cell interactions and distinguishing cells from background make this task very challenging when processing time-lapse phase-contrast video microscopy. In this study, we introduce an end-to-end, scalable, and versatile real-time framework for quantifying and analyzing phagocytic activity. Our proposed pipeline is able to process large data-sets and includes a data quality verification module to counteract potential perturbations such as microscope movements and frame blurring. We also propose an explainable cell segmentation module to improve the interpretability of deep learning methods compared to black-box algorithms. This includes two interpretable deep learning capabilities: visual explanation and model simplification. We demonstrate that interpretability in deep learning is not the opposite of high performance, by additionally providing essential deep learning algorithm optimization insights and solutions. Besides, incorporating interpretable modules results in an efficient architecture design and optimized execution time. We apply this pipeline to quantify and analyze microglial cell phagocytosis in frontotemporal dementia (FTD) and obtain statistically reliable results showing that FTD mutant cells are larger and more aggressive than control cells. The method has been tested and validated on several public benchmarks by generating state-of-the art performances. To stimulate translational approaches and future studies, we release an open-source end-to-end pipeline and a unique microglial cells phagocytosis dataset for immune system characterization in neurodegenerative diseases research. This pipeline and the associated dataset will consistently crystallize future advances in this field, promoting the development of efficient and effective interpretable algorithms dedicated to the critical domain of neurodegenerative diseases' characterization. https://github.com/ounissimehdi/PhagoStat .

Keywords

References

  1. Med Image Anal. 2022 Jul;79:102470 [PMID: 35576821]
  2. Nat Mach Intell. 2020 Jan;2(1):56-67 [PMID: 32607472]
  3. Neural Comput. 2010 Feb;22(2):511-38 [PMID: 19922289]
  4. Phys Med Biol. 2021 Feb 02;66(4):04TR01 [PMID: 33227719]
  5. PeerJ. 2014 Jun 19;2:e453 [PMID: 25024921]
  6. Neuron. 2021 Jul 21;109(14):2275-2291.e8 [PMID: 34133945]
  7. Methods Enzymol. 2012;504:183-200 [PMID: 22264535]
  8. Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2849-E2858 [PMID: 29511098]
  9. Nat Rev Immunol. 2018 Apr;18(4):225-242 [PMID: 29151590]
  10. Bioinformatics. 2021 Dec 11;37(24):4844-4850 [PMID: 34329376]
  11. IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4550-4568 [PMID: 29989994]
  12. IEEE Trans Med Imaging. 2022 Feb 18;PP: [PMID: 35180079]
  13. IEEE Trans Med Imaging. 2022 Oct;41(10):2582-2597 [PMID: 35446762]
  14. J Cell Sci. 2013 Dec 15;126(Pt 24):5529-39 [PMID: 24259662]
  15. IEEE Trans Pattern Anal Mach Intell. 2008 Oct;30(10):1858-65 [PMID: 18703836]
  16. Cell. 2016 May 5;165(4):921-35 [PMID: 27114033]
  17. Int J Mol Sci. 2021 Jul 21;22(15): [PMID: 34360544]
  18. Nat Methods. 2019 Dec;16(12):1233-1246 [PMID: 31133758]
  19. Comput Biol Med. 2021 Jul;134:104523 [PMID: 34091383]
  20. Neuropathol Appl Neurobiol. 2013 Feb;39(1):45-50 [PMID: 23339288]
  21. Biochem Biophys Res Commun. 2006 Dec 22;351(3):602-11 [PMID: 17084815]
  22. PLoS One. 2015 Dec 18;10(12):e0144959 [PMID: 26683608]
  23. Neurobiol Dis. 2020 Sep;143:105015 [PMID: 32663608]
  24. IEEE Trans Vis Comput Graph. 2023 Mar;29(3):1625-1637 [PMID: 34757909]
  25. Nat Methods. 2021 Feb;18(2):203-211 [PMID: 33288961]
  26. Nat Biomed Eng. 2018 Oct;2(10):749-760 [PMID: 31001455]
  27. Nat Methods. 2021 Jan;18(1):100-106 [PMID: 33318659]
  28. BMC Bioinformatics. 2013 Oct 04;14:297 [PMID: 24090363]
  29. J Mol Biol. 2019 Apr 19;431(9):1818-1829 [PMID: 30763568]
  30. Nat Methods. 2017 Aug 31;14(9):849-863 [PMID: 28858338]
  31. Cell. 2021 Sep 30;184(20):5089-5106.e21 [PMID: 34555357]
  32. Mol Biol Cell. 2017 Nov 7;28(23):3215-3228 [PMID: 28931601]
  33. Front Mol Neurosci. 2018 Apr 27;11:144 [PMID: 29755317]
  34. Science. 2006 Oct 6;314(5796):130-3 [PMID: 17023659]
  35. Nat Methods. 2023 Jul;20(7):1010-1020 [PMID: 37202537]
  36. Nat Methods. 2022 Jul;19(7):829-832 [PMID: 35654950]

MeSH Term

Humans
Cytophagocytosis
Neurodegenerative Diseases
Frontotemporal Dementia
Phagocytosis
Aggression

Word Cloud

Created with Highcharts 10.0.0cellsphagocytosisneurodegenerativecellpipelinedeeplearninginterpretableefficientessentialdiseasesprocessingvideomicroscopyend-to-endscalableframeworkincludesmoduleinterpretabilityalgorithmsresultsmicroglialFTDfuturestudiesdatasetcharacterizationenddiseaseQuantifyingdynamicunstainedevaluatingHowevermeasuringrapidinteractionsdistinguishingbackgroundmaketaskchallengingtime-lapsephase-contraststudyintroduceversatilereal-timequantifyinganalyzingphagocyticactivityproposedableprocesslargedata-setsdataqualityverificationcounteractpotentialperturbationsmicroscopemovementsframeblurringalsoproposeexplainablesegmentationimprovemethodscomparedblack-boxtwocapabilities:visualexplanationmodelsimplificationdemonstrateoppositehighperformanceadditionallyprovidingalgorithmoptimizationinsightssolutionsBesidesincorporatingmodulesarchitecturedesignoptimizedexecutiontimeapplyquantifyanalyzefrontotemporaldementiaobtainstatisticallyreliableshowingmutantlargeraggressivecontrolmethodtestedvalidatedseveralpublicbenchmarksgeneratingstate-of-theartperformancesstimulatetranslationalapproachesreleaseopen-sourceuniqueimmunesystemresearchassociatedwillconsistentlycrystallizeadvancesfieldpromotingdevelopmenteffectivededicatedcriticaldomaindiseases'https://githubcom/ounissimehdi/PhagoStatPhagoStatquantificationDeeplearning DLExplainableartificialintelligence XAIImageInterpretabilityNeuro-phagocytosisNeurodegenerativePhase-contrastScalability

Similar Articles

Cited By (1)