[Ethics and artificial intelligence].

Elmar Kotter, Daniel Pinto Dos Santos
Author Information
  1. Elmar Kotter: Klinik f��r Diagnostische und Interventionelle Radiologie, Universit��tsklinikum Freiburg, Hugstetterstr. 55, 79106, Freiburg, Deutschland. elmar.kotter@uniklinik-freiburg.de.
  2. Daniel Pinto Dos Santos: Institut f��r Diagnostische und Interventionelle Radiologie, Uniklinik K��ln, Kerpener Str. 62, 50937, K��ln, Deutschland. daniel.pinto-dos-santos@uk-koeln.de.

Abstract

The introduction of artificial intelligence (AI) into radiology promises to enhance efficiency and improve diagnostic accuracy, yet it also raises manifold ethical questions. These include data protection issues, the future role of radiologists, liability when using AI systems, and the avoidance of bias. To prevent data bias, the datasets need to be compiled carefully and to be representative of the target population. Accordingly, the upcoming European Union AI act sets particularly high requirements for the datasets used in training medical AI systems. Cognitive bias occurs when radiologists place too much trust in the results provided by AI systems (overreliance). So far, diagnostic AI systems are used almost exclusively as "second look" systems. If diagnostic AI systems are to be used in the future as "first look" systems or even as autonomous AI systems in order to enhance efficiency in radiology, the question of liability needs to be addressed, comparable to liability for autonomous driving. Such use of AI would also significantly change the role of radiologists.

Keywords

References

  1. Geis JR, Brady A, Wu CC, Spencer J, Ranschaert E, Jaremko JL et al (2019) Ethics of artificial intelligence in radiology: summary of the joint European and North American multisociety statement. Insights Imaging 10(1):101 [DOI: 10.1186/s13244-019-0785-8]
  2. Brady AP, Allen B, Chong J, Kotter E, Kottler N, Mongan J et al (2024) Developing, purchasing, implementing and monitoring AI tools in radiology: practical considerations. A multisociety statement from the ACR, CAR, ESR, RANZCR & RSNA. Insights Imaging 15(1):16 [DOI: 10.1186/s13244-023-01541-3]
  3. Gichoya JW, Banerjee I, Bhimireddy AR, Burns JL, Celi LA, Chen LC et al (2022) AI recognition of patient race in medical imaging: a modelling study. Lancet Digit Health 4(6):e406���14 [DOI: 10.1016/S2589-7500(22)00063-2]
  4. Glocker B, Jones C, Bernhardt M, Winzeck S (2023) Algorithmic encoding of protected characteristics in chest X���ray disease detection models. eBioMedicine 89:104467 [DOI: 10.1016/j.ebiom.2023.104467]
  5. Harvey H, Topol EJ (2020) More than meets the AI: refining image acquisition and resolution. Lancet 396(10261):1479 [DOI: 10.1016/S0140-6736(20)32284-4]
  6. Knoll F, Murrell T, Sriram A, Yakubova N, Zbontar J, Rabbat M et al (2020) Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn Reson Med 84(6):3054���3070 [DOI: 10.1002/mrm.28338]
  7. Dratsch T, Chen X, Rezazade Mehrizi M, Kloeckner R, M��hringer-Kunz A, P��sken M et al (2023) Automation bias in mammography: the impact of artificial intelligence BI-RADS suggestions on reader performance. Radiology 307(4):e222176 [DOI: 10.1148/radiol.222176]
  8. Gaube S, Suresh H, Raue M, Merritt A, Berkowitz SJ, Lermer E et al (2021) Do as AI say: susceptibility in deployment of clinical decision-aids. Npj Digit Med 4(1):1���8 [DOI: 10.1038/s41746-021-00385-9]
  9. European Commission Artificial Intelligence Act. 2021/0106 (COD). https://artificialintelligenceact.eu/
  10. Bitterman DS, Aerts HJWL, Mak RH (2020) Approaching autonomy in medical artificial intelligence. Lancet Digit Health 2(9):e447���9 [DOI: 10.1016/S2589-7500(20)30187-4]
  11. Oxipit ChestLink���automated chest x���ray reporting. https://oxipit.ai/products/chestlink/ . Zugegriffen: 20. Dez. 2023
  12. Tadavarthi Y, Makeeva V, Wagstaff W, Zhan H, Podlasek A, Bhatia N et al (2022) Overview of noninterpretive artificial intelligence models for safety, quality, workflow, and education applications in radiology practice. Radiol Artif Intell 4(2):e210114 [DOI: 10.1148/ryai.210114]

MeSH Term

Humans
Artificial Intelligence
Computer Security
Radiology

Word Cloud

Created with Highcharts 10.0.0AIsystemsartificialdiagnosticradiologistsliabilitybiasusedintelligenceradiologyenhanceefficiencyalsodatafutureroledatasetsEuropeanUnionactlook"autonomousintroductionpromisesimproveaccuracyyetraisesmanifoldethicalquestionsincludeprotectionissuesusingavoidancepreventneedcompiledcarefullyrepresentativetargetpopulationAccordinglyupcomingsetsparticularlyhighrequirementstrainingmedicalCognitiveoccursplacemuchtrustresultsprovidedoverreliancefaralmostexclusively"second"firstevenorderquestionneedsaddressedcomparabledrivingusesignificantlychange[Ethicsintelligence]BiasEthicsmedicineLiabilityRadiology

Similar Articles

Cited By

No available data.