Effect of aromatic substituents on thermoresponsive functional polycaprolactone micellar carriers for doxorubicin delivery.

Hanghang Wang, Himanshu Polara, Abhi Bhadran, Tejas Shah, Godwin Kweku Babanyinah, Ziyuan Ma, Erika L Calubaquib, Justin T Miller, Michael C Biewer, Mihaela C Stefan
Author Information
  1. Hanghang Wang: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  2. Himanshu Polara: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  3. Abhi Bhadran: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  4. Tejas Shah: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  5. Godwin Kweku Babanyinah: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  6. Ziyuan Ma: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  7. Erika L Calubaquib: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  8. Justin T Miller: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  9. Michael C Biewer: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.
  10. Mihaela C Stefan: Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, United States.

Abstract

Amphiphilic functional polycaprolactone (PCL) diblock copolymers are excellent candidates for micellar drug delivery. The functional groups on the backbone significantly affect the properties of PCL. A systematic investigation of the effect of aromatic substituents on the self-assembly of γ-functionalized PCLs and the delivery of doxorubicin (DOX) is presented in this work. Three thermoresponsive amphiphilic diblock copolymers with poly(γ-benzyloxy-ε-caprolactone) (PBnCL), poly(γ-phenyl- ε-caprolactone) (PPhCL), poly(γ-(4-ethoxyphenyl)-ε-caprolactone) (PEtOPhCL), respectively, as hydrophobic block and γ-tri(ethylene glycol) functionalized PCL (PMECL) as hydrophilic block were prepared through ring-opening polymerization (ROP). The thermoresponsivity, thermodynamic stability, micelle size, morphology, DOX-loading, and release profile were determined. The LCST values of amphiphilic diblock copolymers PMECL--PBnCL, PMECL--PPhCL, and PMECL--PEtOPhCL are 74.2°C, 43.3°C, and 37.3°C, respectively. All three copolymers formed spherical micelles in phosphate-buffered saline (PBS, 1×, pH = 7.4) at low concentrations ranging from 8.7 × 10 g/L to 8.9 × 10 g/L. PMECL--PBnCL micelles showed the highest DOX loading capacity of 3.01 ± 0.18 (wt%) and the lowest drug release, while PMECL--PEtOPhCL micelles exhibited the lowest DOX loading capacity of 1.95 ± 0.05 (wt%) and the highest drug release. Cytotoxicity and cellular uptake of all three micelles were assessed using MDA-MB-231 breast cancer cells. All three empty micelles did not show significant toxicity to the cells at concentrations high up to 0.5 mg/mL. All three DOX-loaded micelles were uptaken into the cells, and DOX was internalized into the nucleus of the cells.

Keywords

References

  1. ACS Biomater Sci Eng. 2016 Nov 14;2(11):1926-1941 [PMID: 33440528]
  2. Polymers (Basel). 2022 Jun 20;14(12): [PMID: 35746086]
  3. Biomacromolecules. 2013 Jun 10;14(6):1826-37 [PMID: 23607866]
  4. Pharmaceutics. 2023 Jul 19;15(7): [PMID: 37514163]
  5. Biomacromolecules. 2012 Jul 9;13(7):2163-73 [PMID: 22681332]
  6. Pharmaceuticals (Basel). 2023 Mar 12;16(3): [PMID: 36986532]
  7. Materials (Basel). 2018 Apr 27;11(5): [PMID: 29702593]
  8. RSC Adv. 2022 Dec 20;13(1):129-139 [PMID: 36605663]
  9. Polymers (Basel). 2022 Nov 03;14(21): [PMID: 36365696]
  10. Polymers (Basel). 2022 Nov 10;14(22): [PMID: 36432974]
  11. J Mater Chem B. 2015 Mar 7;3(9):1779-1787 [PMID: 32262251]
  12. Nanomaterials (Basel). 2019 Jan 11;9(1): [PMID: 30641981]
  13. Biomacromolecules. 2023 Dec 11;24(12):5823-5835 [PMID: 37963215]
  14. J Mater Chem B. 2015 Mar 21;3(11):2308-2317 [PMID: 32262061]
  15. Biomacromolecules. 2020 Apr 13;21(4):1427-1436 [PMID: 32149500]
  16. Biomed Res Int. 2014;2014:579212 [PMID: 24696855]
  17. J Mater Chem B. 2017 Mar 21;5(11):2106-2114 [PMID: 28630710]
  18. ACS Biomater Sci Eng. 2018 Mar 12;4(3):997-1004 [PMID: 33418782]
  19. Biomacromolecules. 2011 Jul 11;12(7):2562-72 [PMID: 21598958]
  20. J Mater Chem B. 2020 Sep 30;8(37):8527-8535 [PMID: 32869819]
  21. ACS Omega. 2021 Oct 11;6(42):28242-28253 [PMID: 34723021]

Word Cloud

Created with Highcharts 10.0.0micellescopolymersdiblockdrugdeliveryDOXthreecellsfunctionalpolycaprolactonePCLthermoresponsiveamphiphilicpolyrelease0micellararomaticsubstituentsdoxorubicinrespectivelyblockfunctionalizedPMECL--PBnCLPMECL--PEtOPhCL3°C7concentrations8×10 g/Lhighestloadingcapacity±wt%lowestAmphiphilicexcellentcandidatesgroupsbackbonesignificantlyaffectpropertiessystematicinvestigationeffectself-assemblyγ-functionalizedPCLspresentedworkThreeγ-benzyloxy-ε-caprolactonePBnCLγ-phenyl-ε-caprolactonePPhCLγ-4-ethoxyphenyl-ε-caprolactonePEtOPhCLhydrophobicγ-triethyleneglycolPMECLhydrophilicpreparedring-openingpolymerizationROPthermoresponsivitythermodynamicstabilitymicellesizemorphologyDOX-loadingprofiledeterminedLCSTvaluesPMECL--PPhCL742°C4337formedsphericalphosphate-bufferedsalinePBSpH=4lowranging9showed30118exhibited19505CytotoxicitycellularuptakeassessedusingMDA-MB-231breastcanceremptyshowsignificanttoxicityhigh5 mg/mLDOX-loadeduptakeninternalizednucleusEffectcarrierspolymericpolymers

Similar Articles

Cited By