Microbial species pool-mediated diazotrophic community assembly in crop microbiomes during plant development.

Chao Xiong, Brajesh K Singh, Yong-Guan Zhu, Hang-Wei Hu, Pei-Pei Li, Yan-Lai Han, Li-Li Han, Qin-Bing Zhang, Jun-Tao Wang, Si-Yi Liu, Chuan-Fa Wu, An-Hui Ge, Li-Mei Zhang, Ji-Zheng He
Author Information
  1. Chao Xiong: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. ORCID
  2. Brajesh K Singh: Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
  3. Yong-Guan Zhu: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
  4. Hang-Wei Hu: Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.
  5. Pei-Pei Li: College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, China.
  6. Yan-Lai Han: College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, China.
  7. Li-Li Han: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. ORCID
  8. Qin-Bing Zhang: Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, China.
  9. Jun-Tao Wang: Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
  10. Si-Yi Liu: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
  11. Chuan-Fa Wu: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
  12. An-Hui Ge: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
  13. Li-Mei Zhang: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China. ORCID
  14. Ji-Zheng He: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Abstract

Plant-associated diazotrophs strongly relate to plant nitrogen (N) supply and growth. However, our knowledge of diazotrophic community assembly and microbial N metabolism in plant microbiomes is largely limited. Here we examined the assembly and temporal dynamics of diazotrophic communities across multiple compartments (soils, epiphytic and endophytic niches of root and leaf, and grain) of three cereal crops (maize, wheat, and barley) and identified the potential N-cycling pathways in phylloplane microbiomes. Our results demonstrated that the microbial species pool, influenced by site-specific environmental factors (e.g., edaphic factors), had a stronger effect than host selection (i.e., plant species and developmental stage) in shaping diazotrophic communities across the soil-plant continuum. Crop diazotrophic communities were dominated by a few taxa (~0.7% of diazotrophic phylotypes) which were mainly affiliated with , , , and . Furthermore, eight dominant taxa belonging to and were identified as keystone diazotrophic taxa for three crops and were potentially associated with microbial network stability and crop yields. Metagenomic binning recovered 58 metagenome-assembled genomes (MAGs) from the phylloplane, and the majority of them were identified as novel species (37 MAGs) and harbored genes potentially related to multiple N metabolism processes (e.g., nitrate reduction). Notably, for the first time, a high-quality MAG harboring genes involved in the complete denitrification process was recovered in the phylloplane and showed high identity to . Overall, these findings significantly expand our understanding of ecological drivers of crop diazotrophs and provide new insights into the potential microbial N metabolism in the phyllosphere.IMPORTANCEPlants harbor diverse nitrogen-fixing microorganisms (i.e., diazotrophic communities) in both belowground and aboveground tissues, which play a vital role in plant nitrogen supply and growth promotion. Understanding the assembly and temporal dynamics of crop diazotrophic communities is a prerequisite for harnessing them to promote plant growth. In this study, we show that the site-specific microbial species pool largely shapes the structure of diazotrophic communities in the leaves and roots of three cereal crops. We further identify keystone diazotrophic taxa in crop microbiomes and characterize potential microbial N metabolism pathways in the phyllosphere, which provides essential information for developing microbiome-based tools in future sustainable agricultural production.

Keywords

References

  1. PeerJ. 2019 Jul 26;7:e7359 [PMID: 31388474]
  2. J Appl Microbiol. 2021 Aug;131(2):898-912 [PMID: 33331107]
  3. Environ Microbiol. 2021 Apr;23(4):1907-1924 [PMID: 32996254]
  4. Annu Rev Microbiol. 2019 Sep 8;73:69-88 [PMID: 31091418]
  5. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  6. FEMS Microbiol Ecol. 2008 Aug;65(2):220-8 [PMID: 18631250]
  7. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 [PMID: 30931475]
  8. mBio. 2022 Apr 26;13(2):e0007922 [PMID: 35384699]
  9. Science. 2017 May 26;356(6340): [PMID: 28546156]
  10. Nat Commun. 2019 Sep 12;10(1):4135 [PMID: 31515535]
  11. FEMS Microbiol Ecol. 2019 Aug 1;95(8): [PMID: 31295349]
  12. Ann Bot. 2013 May;111(5):743-67 [PMID: 23478942]
  13. Science. 2015 May 22;348(6237):844-5 [PMID: 25999482]
  14. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13081-13086 [PMID: 30498029]
  15. ISME J. 2022 Feb;16(2):339-345 [PMID: 34522008]
  16. Microbiome. 2018 Feb 12;6(1):31 [PMID: 29433554]
  17. Bioinformatics. 2015 May 15;31(10):1674-6 [PMID: 25609793]
  18. ISME J. 2015 Jan;9(1):265-7 [PMID: 25012902]
  19. Microbiome. 2021 Aug 13;9(1):171 [PMID: 34389047]
  20. Sci Total Environ. 2021 Nov 25;797:148895 [PMID: 34346368]
  21. Bioinformatics. 2016 Feb 15;32(4):605-7 [PMID: 26515820]
  22. Nat Ecol Evol. 2020 Jan;4(1):122-131 [PMID: 31900452]
  23. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  24. Nat Commun. 2022 Jun 11;13(1):3361 [PMID: 35688828]
  25. Microbiome. 2019 Oct 31;7(1):143 [PMID: 31672173]
  26. Phytochemistry. 2004 Apr;65(7):783-92 [PMID: 15081277]
  27. ISME J. 2010 Jun;4(6):719-28 [PMID: 20164863]
  28. ISME J. 2017 Dec;11(12):2864-2868 [PMID: 28742071]
  29. Environ Microbiol. 2006 Jun;8(6):1005-16 [PMID: 16689721]
  30. Database (Oxford). 2014 Feb 05;2014:bau001 [PMID: 24501396]
  31. PLoS Comput Biol. 2012;8(7):e1002606 [PMID: 22807668]
  32. ISME J. 2021 Feb;15(2):550-561 [PMID: 33028975]
  33. PLoS One. 2013 Sep 13;8(9):e74500 [PMID: 24058578]
  34. Nature. 2012 Aug 2;488(7409):91-5 [PMID: 22859207]
  35. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  36. Nat Commun. 2023 Feb 23;14(1):1039 [PMID: 36823152]
  37. New Phytol. 2021 Jan;229(2):1091-1104 [PMID: 32852792]
  38. New Phytol. 2005 May;166(2):577-88 [PMID: 15819919]
  39. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  40. Microbiome. 2018 Mar 27;6(1):58 [PMID: 29587885]
  41. Front Plant Sci. 2017 Sep 15;8:1570 [PMID: 28966625]
  42. Nature. 2017 Jun 1;546(7656):145-147 [PMID: 28538736]
  43. Nat Microbiol. 2020 Feb;5(2):314-330 [PMID: 31844298]
  44. Science. 2018 Jan 19;359(6373):320-325 [PMID: 29348236]
  45. Microbiome. 2017 Feb 23;5(1):25 [PMID: 28231859]
  46. Nucleic Acids Res. 2022 Jan 7;50(D1):D785-D794 [PMID: 34520557]
  47. Nat Rev Microbiol. 2020 Nov;18(11):601-602 [PMID: 33037425]
  48. Nat Methods. 2011 Jul 17;8(9):761-3 [PMID: 21765408]
  49. PLoS Biol. 2018 Aug 7;16(8):e2006352 [PMID: 30086128]
  50. Science. 2011 May 27;332(6033):1097-100 [PMID: 21551032]
  51. Appl Environ Microbiol. 2017 Dec 1;83(24): [PMID: 28986378]
  52. PLoS One. 2012;7(7):e42149 [PMID: 22848735]
  53. Res Microbiol. 2001 Jan-Feb;152(1):95-103 [PMID: 11281330]
  54. Biotechnol Biofuels. 2015 Dec 21;8:222 [PMID: 26697111]
  55. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  56. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  57. Glob Chang Biol. 2015 Dec;21(12):4613-26 [PMID: 26146936]
  58. mSystems. 2021 Dec 21;6(6):e0112521 [PMID: 34846165]
  59. Annu Rev Genet. 2016 Nov 23;50:211-234 [PMID: 27648643]
  60. J Exp Bot. 2006;57(3):463-70 [PMID: 16356940]
  61. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  62. Microorganisms. 2020 Jan 02;8(1): [PMID: 31906569]
  63. Environ Int. 2020 Nov;144:106022 [PMID: 32795750]
  64. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  65. Bioresour Technol. 2016 Jan;200:493-9 [PMID: 26519702]
  66. Bioinformatics. 2019 Nov 15;: [PMID: 31730192]
  67. mSystems. 2017 Dec 5;2(6): [PMID: 29238751]
  68. FEMS Microbiol Ecol. 2019 Mar 1;95(3): [PMID: 30726948]
  69. mBio. 2013 Sep 17;4(5):e00592-13 [PMID: 24045641]
  70. Bioresour Technol. 2021 Jan;319:124198 [PMID: 33038648]
  71. Nat Commun. 2017 Oct 20;8(1):1089 [PMID: 29057875]
  72. New Phytol. 2022 Jun;234(6):1977-1986 [PMID: 34921429]
  73. Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7368-7373 [PMID: 29941552]
  74. Nature. 2012 Aug 2;488(7409):86-90 [PMID: 22859206]
  75. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  76. Microbiome. 2018 Sep 15;6(1):158 [PMID: 30219103]
  77. ISME J. 2015 Nov;9(11):2435-41 [PMID: 25909973]
  78. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 [PMID: 30418610]
  79. Bioinformatics. 2011 Aug 15;27(16):2194-200 [PMID: 21700674]
  80. ISME J. 2021 Apr;15(4):949-964 [PMID: 33230265]

Grants

  1. XDA28020101/Chinese Academy of Sciences (CAS)
  2. 42277289/National Natural Science Foundation of China (NSFC)
  3. 42207142/National Natural Science Foundation of China (NSFC)
  4. DP210102081/Australian Research Council (ARC)

MeSH Term

Microbiota
Agriculture
Soil
Nitrogen
Crops, Agricultural
Plant Development

Chemicals

Soil
Nitrogen

Word Cloud

Created with Highcharts 10.0.0diazotrophicplantmicrobialcommunitiesNspeciescropassemblymetabolismmicrobiomescropsetaxadiazotrophsgrowththreecerealidentifiedpotentialpathwaysphylloplaneMAGsphyllospherenitrogensupplycommunitylargelytemporaldynamicsacrossmultipleN-cyclingpoolsite-specificfactorsgicontinuumkeystonepotentiallyrecoveredmetagenome-assembledgenomesgenesPlant-associatedstronglyrelateHoweverknowledgelimitedexaminedcompartmentssoilsepiphyticendophyticnichesrootleafgrainmaizewheatbarleyresultsdemonstratedinfluencedenvironmentaledaphicstrongereffecthostselectiondevelopmentalstageshapingsoil-plantCropdominated~07%phylotypesmainlyaffiliatedFurthermoreeightdominantbelongingassociatednetworkstabilityyieldsMetagenomicbinning58majoritynovel37harboredrelatedprocessesnitratereductionNotablyfirsttimehigh-qualityMAGharboringinvolvedcompletedenitrificationprocessshowedhighidentityOverallfindingssignificantlyexpandunderstandingecologicaldriversprovidenewinsightsIMPORTANCEPlantsharbordiversenitrogen-fixingmicroorganismsbelowgroundabovegroundtissuesplayvitalrolepromotionUnderstandingprerequisiteharnessingpromotestudyshowshapesstructureleavesrootsidentifycharacterizeprovidesessentialinformationdevelopingmicrobiome-basedtoolsfuturesustainableagriculturalproductionMicrobialpool-mediateddevelopmentnetworksmicrobiomesoil–plant

Similar Articles

Cited By

No available data.