Contrasting somatic mutation patterns in aging human neurons and oligodendrocytes.

Javier Ganz, Lovelace J Luquette, Sara Bizzotto, Michael B Miller, Zinan Zhou, Craig L Bohrson, Hu Jin, Antuan V Tran, Vinayak V Viswanadham, Gannon McDonough, Katherine Brown, Yasmine Chahine, Brian Chhouk, Alon Galor, Peter J Park, Christopher A Walsh
Author Information
  1. Javier Ganz: Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  2. Lovelace J Luquette: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
  3. Sara Bizzotto: Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
  4. Michael B Miller: Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  5. Zinan Zhou: Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  6. Craig L Bohrson: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
  7. Hu Jin: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
  8. Antuan V Tran: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
  9. Vinayak V Viswanadham: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
  10. Gannon McDonough: Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  11. Katherine Brown: Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  12. Yasmine Chahine: Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
  13. Brian Chhouk: Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
  14. Alon Galor: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
  15. Peter J Park: Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA. Electronic address: peter_park@hms.harvard.edu.
  16. Christopher A Walsh: Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address: christopher.walsh@childrens.harvard.edu.

Abstract

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.

Keywords

References

  1. Nature. 2019 Oct;574(7779):532-537 [PMID: 31645730]
  2. Science. 2018 Nov 23;362(6417):911-917 [PMID: 30337457]
  3. Glia. 2013 Feb;61(2):273-86 [PMID: 23090919]
  4. Geroscience. 2023 Feb;45(1):249-264 [PMID: 35930094]
  5. Cell Stem Cell. 2010 Oct 8;7(4):470-82 [PMID: 20887953]
  6. Science. 2015 May 22;348(6237):880-6 [PMID: 25999502]
  7. Cell Rep. 2018 Nov 27;25(9):2308-2316.e4 [PMID: 30485801]
  8. Nature. 2020 Feb;578(7793):94-101 [PMID: 32025018]
  9. Nature. 2022 Aug;608(7924):724-732 [PMID: 35948631]
  10. Cell. 2020 Aug 6;182(3):594-608.e11 [PMID: 32679030]
  11. Cancer Discov. 2022 Jan;12(1):172-185 [PMID: 34389641]
  12. BMC Genomics. 2019 Aug 30;20(1):685 [PMID: 31470794]
  13. Cogn Behav Neurol. 2005 Jun;18(2):102-7 [PMID: 15970729]
  14. Nature. 2019 Sep;573(7772):61-68 [PMID: 31435019]
  15. J Alzheimers Dis. 2018;62(3):1141-1179 [PMID: 28984582]
  16. Nat Methods. 2021 Nov;18(11):1333-1341 [PMID: 34725479]
  17. N Engl J Med. 2014 Dec 25;371(26):2477-87 [PMID: 25426838]
  18. Cell. 2023 Sep 14;186(19):4117-4133.e22 [PMID: 37591239]
  19. Genome Res. 2013 May;23(5):749-61 [PMID: 23478400]
  20. Cell. 2014 Nov 6;159(4):766-74 [PMID: 25417154]
  21. Nature. 2021 May;593(7859):440-444 [PMID: 33767446]
  22. Science. 2021 Apr 2;372(6537):91-94 [PMID: 33795458]
  23. Science. 2018 Feb 2;359(6375):555-559 [PMID: 29217584]
  24. Science. 2020 Sep 11;369(6509):1318-1330 [PMID: 32913098]
  25. Development. 2021 Aug 1;148(15): [PMID: 34351410]
  26. Nature. 2020 Feb;578(7793):82-93 [PMID: 32025007]
  27. Nat Genet. 2015 Dec;47(12):1402-7 [PMID: 26551669]
  28. Nature. 2019 Feb;566(7745):538-542 [PMID: 30675058]
  29. Nat Protoc. 2018 May;13(5):819-839 [PMID: 29599440]
  30. Ageing Res Rev. 2017 Mar;34:64-76 [PMID: 27865980]
  31. Nature. 2015 Feb 19;518(7539):317-30 [PMID: 25693563]
  32. Neuroscience. 2014 Sep 12;276:187-205 [PMID: 24280637]
  33. Dev Cell. 2022 Jun 6;57(11):1421-1436.e5 [PMID: 35523173]
  34. Cell Genom. 2022 Nov 09;2(11):None [PMID: 36388765]
  35. Ann Neurol. 1995 Jul;38(1):92-101 [PMID: 7611731]
  36. AJNR Am J Neuroradiol. 2011 Apr;32(4):682-7 [PMID: 21330396]
  37. N Engl J Med. 2002 Jan 17;346(3):165-73 [PMID: 11796850]
  38. Nat Protoc. 2012 May 03;7(6):1024-41 [PMID: 22555242]
  39. Cell. 2011 Jul 22;146(2):209-21 [PMID: 21737130]
  40. Cell. 2019 Aug 8;178(4):835-849.e21 [PMID: 31327527]
  41. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  42. Nat Genet. 2022 Oct;54(10):1564-1571 [PMID: 36163278]
  43. Cell. 2012 Oct 26;151(3):483-96 [PMID: 23101622]
  44. Cell. 2021 Oct 28;184(22):5653-5669.e25 [PMID: 34672952]
  45. Nature. 2022 Feb;602(7898):623-631 [PMID: 35140396]
  46. Nature. 2018 Sep;561(7724):473-478 [PMID: 30185910]
  47. Nat Neurosci. 2020 Jun;23(6):771-781 [PMID: 32341540]
  48. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  49. J Comp Neurol. 2016 Dec 15;524(18):3865-3895 [PMID: 27187682]
  50. Nat Neurosci. 2013 May;16(5):571-9 [PMID: 23542689]
  51. Nature. 2021 May;593(7859):405-410 [PMID: 33911282]
  52. Cold Spring Harb Perspect Biol. 2015 Jan 29;7(5): [PMID: 25635044]
  53. Lancet. 2003 Sep 6;362(9386):798-805 [PMID: 13678875]
  54. J Neurosci. 2002 Apr 1;22(7):2451-9 [PMID: 11923409]
  55. Science. 2018 Apr 20;360(6386):331-335 [PMID: 29674595]
  56. Nature. 2022 Apr;604(7907):714-722 [PMID: 35444284]
  57. Nature. 2015 Feb 19;518(7539):360-364 [PMID: 25693567]
  58. N Engl J Med. 2014 Dec 25;371(26):2488-98 [PMID: 25426837]
  59. Proc Natl Acad Sci U S A. 2021 Feb 23;118(8): [PMID: 33593904]
  60. Proc Natl Acad Sci U S A. 2021 Jun 15;118(24): [PMID: 34099548]
  61. Methods Mol Biol. 2022;2493:289-314 [PMID: 35751823]
  62. Int J Geriatr Psychiatry. 2009 Feb;24(2):109-17 [PMID: 18637641]
  63. Nat Protoc. 2017 Dec;12(12):2478-2492 [PMID: 29120462]
  64. Science. 2021 Mar 19;371(6535):1249-1253 [PMID: 33737485]
  65. Neuroimage. 2009 Feb 15;44(4):1247-58 [PMID: 19027860]
  66. Nature. 2020 Apr;580(7805):640-646 [PMID: 32350471]
  67. Science. 2015 Oct 2;350(6256):94-98 [PMID: 26430121]
  68. Cell. 2017 Nov 16;171(5):1029-1041.e21 [PMID: 29056346]
  69. Science. 2019 Nov 29;366(6469):1134-1139 [PMID: 31727856]

Grants

  1. R01 HG012573/NHGRI NIH HHS
  2. P50 HD105351/NICHD NIH HHS
  3. R01 CA269805/NCI NIH HHS
  4. P30 AG072978/NIA NIH HHS
  5. U54 NS115266/NINDS NIH HHS
  6. R01 AG078929/NIA NIH HHS
  7. U54 HD090255/NICHD NIH HHS
  8. R01 NS032457/NINDS NIH HHS
  9. DP2 AG086138/NIA NIH HHS
  10. UM1 DA058230/NIDA NIH HHS
  11. T32 HG002295/NHGRI NIH HHS
  12. R01 AG082346/NIA NIH HHS
  13. K08 AG065502/NIA NIH HHS
  14. R01 AG070921/NIA NIH HHS
  15. P50 CA165962/NCI NIH HHS
  16. /Howard Hughes Medical Institute

MeSH Term

Humans
Aging
Chromatin
Mutation
Neurons
Oligodendroglia
Single-Cell Gene Expression Analysis
Whole Genome Sequencing
Brain
Polymorphism, Single Nucleotide
INDEL Mutation
Biological Specimen Banks
Oligodendrocyte Precursor Cells

Chemicals

Chromatin

Word Cloud

Created with Highcharts 10.0.0mutationssomaticbrainoligodendrocytesneuronsagingpatternscelltypessingleagesSNVsindelschromatinoligodendrocyteenrichedactivecellsCharacterizingimportantdisentanglingcomplexmechanismsyetlittleknownmutationaldifferentperformedwhole-genomesequencingWGS8620mixedglia56neurotypicalindividualsspanning04-104yearsidentified>92000single-nucleotidevariantssmallinsertions/deletionsAlthoughaccumulatelinearlyaccumulated81%faster28%slowerCorrelationsingle-nucleusRNAprofilesaccessibilitybrainsrevealedinactivegenomicregionsdistributedacrossgenomesimilarlycancerscontrastneuronalopentranscriptionallystarkdifferencessuggestassortmentmutagenicprocessesContrastingmutationhumancancerdisordersglialgliomagliomagenesisprecursor

Similar Articles

Cited By