Variability of the trophic state in a coastal reef system associated with submarine groundwater discharge in the Mexican Caribbean.

Karla Camacho-Cruz, María Concepción Ortiz-Hernández, Laura Carrillo, Alberto Sánchez
Author Information
  1. Karla Camacho-Cruz: Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico. krla_2307@hotmail.com. ORCID
  2. María Concepción Ortiz-Hernández: El Colegio de la Frontera Sur, Unidad Chetumal Avenida Centenario Km 5.5, s/n Col. Pacto Obrero Campesino Chetumal, C.P. 77014, Quintana Roo, Mexico.
  3. Laura Carrillo: El Colegio de la Frontera Sur, Unidad Chetumal Avenida Centenario Km 5.5, s/n Col. Pacto Obrero Campesino Chetumal, C.P. 77014, Quintana Roo, Mexico.
  4. Alberto Sánchez: Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico.

Abstract

Submarine groundwater discharges (SGD) have been associated with important sources of nutrients between the land and oceans that can generate eutrophication conditions. This study aims to analyze the behavior of nitrogen and phosphorus using the mixing curve method, to examine the variation of the trophic state using the Karydis Index, and to evaluate the δN in benthic organisms to trace the origin of nitrogen in neap tide (November) and spring tide (January) in the Manatí Cenote, and Nohoch-Teek reef lagoon in the Mexican Caribbean. Nitrogen and phosphate enrichment was in the Manatí Cenote during neap and spring tides. This enrichment was particularly noticeable in the reef lagoon during low tides in the areas influenced by SGD. In the Cenote, differences in the nitrate trophic state were observed, indicating an eu-mesotrophic condition during neap tide and a mesotrophic condition during spring tide. However, no significant differences were observed for ammonium (oligo-mesotrophic), nitrites, or phosphate compounds (oligotrophic). The trophic state reef lagoon exhibited a similar pattern but with different spatial variations. In both systems, phosphorus was a limiting nutrient, while δN suggested anthropogenic nitrogen uptake by several benthic organisms.

Keywords

References

  1. Adyasari D, Oehler T, Afiati N, Moosdorf N (2018) Groundwater nutrient inputs into an urbanized tropical estuary system. Sci Total Environ 627:1066–1079. https://doi.org/10.1016/j.scitotenv.2018.01.281 [DOI: 10.1016/j.scitotenv.2018.01.281]
  2. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuar 25:704–726
  3. Aravena R, Evans ML, Cherry JA (1993) Stable isotopes of oxygen and nitrogen in source identifica- tion of nitrate from septic systems. Ground Water 31:180–186
  4. Ávila-Torres G, Rosiles-González G, Carrillo-Jovel VH, Acosta-González G, Cejudo-Espinosa E, Ortega-Camacho D, Hernández-Zepeda C, Valenzuela OAM (2023) Microcystin concentrations and detection of the mcyA gene in water collected from agricultural, urban, and recreational areas in a karst aquifer in the Yucatan Peninsula of Mexico. Microbiol Res 14, 1168–1184. 10.3390/microbiolres14030078
  5. Badee Nezhad A, Emamjomeh MM, Farzadkia M, Jonidi Jafari A, Sayadi M, Davou-Dian Talab AH (2017) Nitrite and nitrate concenttrations in the drinking groundwater of Shiraz City, South-central Iran by Statistical Models. Iran J Public Health 46(9):1275–1284 [PMID: 29026794]
  6. Baker DM, Jordán-Dahlgren E, Maldonado MA, Harvell CD (2010) Sea fan corals provide a stable isotope baseline for assessing sewage pollution in the Mexican Caribbean. Limnol Oceanogr 55(5):2139–2149
  7. Baker DM, Rodríguez-Martínez RE, Fogel ML (2013) Tourism’s nitrogen footprint on a Mesoamrican coral reef. Coral Reefs 32:691–699
  8. Ban NC, Bax NJ, Gjerde KM, Devillers R, Dunn DC, Dunstan PK, Halpin PN (2014) Systematic conservation planning: a better recipe for managing the high seas for biodiversity conservation and sustainable use. Conserv Lett 7(1):41–54
  9. Bauer-Gottwein P, Bibi RN, Gondwe GC, Marín LE, Rebolledo-Vieyra M, Merediz-Alonson G (2014) Review: the Yucatán Peninsula karst aquifer, Mexico. Hydrol J 19:507–524
  10. Beddows PA (1999) Conduit hydrogeology of a tropical coastal carbonate aquifer: Caribbean coast of the Yucatan Peninsula. McMaster University (M.Sc. Thesis) p 162
  11. Beddows PA (2004) Groundwater hydrology of a coastal conduit carbonate aquifer: Caribbean Coast of the Yucatan Peninsula, Mexico. Dissertation,. University of Bristol
  12. Bejannin S, Tamborski JJ, van Beek P, Souhaut M, Stieglitz T, Radakovitch O, Claude C, Conan P, Pujo-Pay M, Crispi O, Le Roy E, Estournel C (2020) Nutrient fluxes associated with submarine groundwater discharge from karstic coastal aquifers (Côte Bleue, French Mediterranean Coastline). Front Environ Sci 7:205. https://doi.org/10.3389/fenvs.2019.00205 [DOI: 10.3389/fenvs.2019.00205]
  13. Boyle E, Collier R, Dengler AT, Edmond JM, Ng AC, Stallard RF (1974) On the chemical mass-balance in estuaries. Geochim Cosmochim Acta 38:1719–1728
  14. Broche P, Devenon JL, Forget P, Maistre JC, Naudin JJ, Kauwt G (1998) Experimental study of the Rhone plume Part I: physics and dynamics. Oceanol Acta 21(6):725–738
  15. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeeochemistry 66:3–33
  16. Cable JE, Corbett D, Walsh MM (2002) Phosphate uptake in coastal limestone aquifers: a fresh look at wastewater management. Limnol Oceanogr Bull 11:29–32
  17. Camacho-Cruz KA, MaC O-H, Sánchez A, Carrillo L, De Jesús NA (2020) Water quality in the eastern karst region of the Yucatan Peninsula: nutrients and stable nitrogen isotopes in turtle grass. Thalassia testudinum Environ Sci Pollu Research 27(2):15967–15983. https://doi.org/10.1007/s11356-019-04757-3 [DOI: 10.1007/s11356-019-04757-3]
  18. Capone DG, Bronk DA, Mulholland MR, Carpenter EJ (eds) (2008) Nitrogen in the marine environment. Elsevier
  19. Carreira JA, Vinegla B, Lajtha K (2006) Secondary CaCO3 and precipitation of P–Ca compounds control the retention of soil P in arid ecosystems. J Arid Environ 64:460–473
  20. Carrillo L, Johns EM, Smith RH, Lamkin JT, Largier JL (2016) Pathways and hydrography in the Mesoamerican Barrier Reef System Part 2: Water masses and thermohaline structure. Cont Shelf Res 120:41–58. https://doi.org/10.1016/j.csr.2016.03.014 [DOI: 10.1016/j.csr.2016.03.014]
  21. Carrillo L, Palacios-Hernández E, Ramírez AM, Morales-Vela JB (2009) Hydrometeorological and bathymetric characteristics. In: Espinoza Ávalos J, Islebe GA, Hernández Arana HA (eds) The ecological system of the Bay of Chetumal/Corozal: western coast of the Caribbean Sea. El Colegio de la Frontera Sur, Mexico, p 247
  22. Carruthers T, Vantussenbroek B, Dennison W (2005) Influence of submarine springs and wastewater on nutrient dynamics of Caribbean seagrass meadows. Estuar Coast Shelf Sci 64:191–199
  23. Chen X, Cukrov N, Santos IR, Rodellas V, Cukrov N, Du J (2020) Karstic submarine groundwater discharge into the Mediterranean: radon-base nutrient fluxes in an anchialine cave and a basin-wide upscaling. Geochim Cosmmochim Acta 268:467–484
  24. Christensen P, Rysgaard S, Sloth N, Dalsgaard T, Schwærter S (2000) Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammo- nium in an estuarine fjord with sea cage trout farms. Aquat Microb Ecol 21:73–84. https://doi.org/10.3354/ame021073 [DOI: 10.3354/ame021073]
  25. Cole ML, Kroeger KD, McClelland JW, Valiela I (2006) Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater. Biogeochemistry 77:199–215
  26. CONAGUA (2022) Situación del Subsector Agua Potable, Alcantarillado y Saneamiento. Edición 2021 México: Secretaría de Medio Ambiente y Recursos Naturales, Accessed July 8 2023. https://www.gob.mx/cms/uploads/attachment/file/702445/SGAPDS-2-21-a_compressed.pdf
  27. Coronado C, Candela J, Iglesias-Prieto R, Sheinbaum J, López M, Ocampo-Torres FJ (2007) On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs 26:149–163. https://doi.org/10.1007/s00338-006-0175-9 [DOI: 10.1007/s00338-006-0175-9]
  28. de Jonge VN, Elliott M (2001) Eutrophication. In: Steele J, Thorpe S, Turekian K (eds) Encyclopedia of Marine Sciences. Academic Press, London
  29. El-Gamal AA, Peterson RN, Burnett WC (2012) Detecting freshwater inputs via groundwater discharge to Marina Lagoon, Mediterranean Coast. Egypt Estuar Coast 35:1486–1499
  30. Garcia-Solsona E, Garcia-Orellana J, Masqué P, Rodellas V, Mejías M, Ballesteros B, Domínguez JA (2010) Groundwater and nutrient discharge trough karstic coastal spring (Castelló, Spain). Biogeosciences 7:2625–2638
  31. Glibert PM, Beusen AHW, Harrison JA, Dürr HH, Bouwman A, Laruelle GG (2018) Changing land, sea and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M, Pitcher G, Zhou M (eds) Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB). Springer, Cham, Switzerland, pp 53–76
  32. Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont C, Leavitt PR, Parker AE, Burkholder JM, Kana TM (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 6:165–197
  33. González-De Zayas R, Rossi S, Hernández-Fernández L, Rr V-O, Soares M, Merino-Ibarra M, Castillo-Sandoval FS, Soto-Jiménez MF (2020) Stable isotopes used to assess pollution impacts on coastal and marine ecosystems of Cuba and Mexico. Reg Stud Mar Sci 39:101413. https://doi.org/10.1016/j.rsma.2020.101413 [DOI: 10.1016/j.rsma.2020.101413]
  34. Hernández-Terrones L, Rebolledo-Vieyra M, Merino-Ibarra M, Soto M, Le- Cossec A, Monroy-Ríos E (2011) Groundwater pollution in a karstic region (NE Yucatan): baseline nutrient content and flux to coastal ecosystems. Water Air Soil Pollut 218(1–4):517–528
  35. Herrera-Silveira JA, Comin JF (1998) Overview and characterization of the hydrology and primary producer communities of selected coastal lagoons of Yucatan, Mexico. Aquat Ecosyst Health Manag 1:353–372
  36. Herrera-Silveira JA, Morales-Ojeda SM (2009) Evaluation of the health status of a coastal ecosystem in Southeast Mexico: assessment of water quality, phytoplankton and submerged aquatic vegetation. Mar Pollut Bull 59(1e3):72e86
  37. Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20
  38. INEGI (2022) Número de Habitantes https://cuentame.inegi.org.mx/monografias/informacion/qroo/poblacion/Accessed July 8 2023
  39. Karydis M, Ignatiades L, Moschopoulou N (1983) An index associated with nutrient eutrophication in the marine environment. Estuar Coast Shelf Sci 16:339–344
  40. Kim G, Kim JS, Hwang DW (2011) Submarine groundwater discharge from oceanic islands standing in oligotrophic oceans: implications for global biological production and organic carbon fluxes. Limnol Oceanogr 56(2):673–682. https://doi.org/10.4319/lo.2011.56.2.0673 [DOI: 10.4319/lo.2011.56.2.0673]
  41. Knee KL, Paytan A (2011) Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the coastal ocean. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 4. Academic Press, Waltham, pp 205–233
  42. Knee KL, Street JH, Grossman EE, Boehm AB, Paytan A (2010) Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater- dominated system: relation to land use (Kona Coast, Hawai’i, USA). Limnol Oceanogr 55:1105–1122
  43. Kroeger KD, Charette MA (2008) Nitrogen biogeochemistry of submarine groundwater discharge. Limnol Oceanogr 53:1025–1039
  44. Krom MD, Kress N, Brenner S (1991) Phosphorus limitation of primary productivity in the eastern Mediterranean. Limnol Oceanogr 36:424–432
  45. Lapointe B, Clark M (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15:465–476
  46. Lapointe BE, Barile PJ, Littler MM, Littler DS (2005) Macroalgal blooms on southeast Florida coral reefs. II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4:1106–1122
  47. Liu J, Ni S, Xilong W, Jinzhou D (2017) Submarine groundwater discharge and associated nutrient fluxes into the Southern Yellow Sea: a case study for semi-enclosed and oligotrophic seas-implication for green tide bloom. https://doi.org/10.1002/2016JC012282 [DOI: 10.1002/2016JC012282]
  48. Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80:199–217. https://doi.org/10.1016/j.pocean.2009.02.001 [DOI: 10.1016/j.pocean.2009.02.001]
  49. Mariotti A, Landeau A, Simon B (1988) 15N isotope biogeochemistry and natural denitrification process in groundwater: application to the chalk aquifer of northern France. Geochim Cosmochim Acta 52:1869–1878
  50. Markaki Z, Loÿe-Pilot MD, Violaki K, Benyahya L, Mihalopoulos N (2010) Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Mar Chem 120:187–194
  51. Medina-Gómez I, Herrera-Silveira JA (2003) Spatial characterization of water quality in a karstic coastal lagoon without anthropogenic disturbance: a multivariate approach. Estuar Coast Shelf Sci 58(3):455–465
  52. Montiel D, Dimova N, Andreo B, Prieto J, García-Orellana J, Rodellas V (2018) Assessing submarino groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal kart aquifers: Challenges and solutions. J Hydrol 557:222–242. https://doi.org/10.1016/j.jhydrol.2017.12.036 [DOI: 10.1016/j.jhydrol.2017.12.036]
  53. Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Annu Rev Mar Sci 2:59–88. https://doi.org/10.1146/annurev-marine-120308-081019 [DOI: 10.1146/annurev-marine-120308-081019]
  54. Moore WS, Arnold R (1996) Measurement of 223Ra and 224Ra on coastal waters using a delayed coincidence counter. J Geophys Res Oceans 101:1321–1329. https://doi.org/10.1029/95JC03139 [DOI: 10.1029/95JC03139]
  55. Morales-Ojeda SM, Herrera-Silveira JA, Montero J (2010) Terrestrial and oceanic influence on spatial hydrochemistry and trophic status in subtropical marine near-shore waters. Water Res 44(20):5949–5964 [PMID: 20719354]
  56. Mutchler T, Dunton K, Townsend-Small A, Fredriksen S, Rasser M (2007) Isotopic and elemental indicators of nutrient sources and status of coastal habitats in the Caribbean Sea, Yucatan Peninsula, Mexico. Estuar Coast Sci 74:449–457. https://doi.org/10.1016/j.ecss.2007.04.005 [DOI: 10.1016/j.ecss.2007.04.005]
  57. Mutchler T, Mooney RF, Wallace S, Podsim L, Fredriksen S, Dunton KH (2010) Origins and fate of inorganic nitrogen from land to coastal ocean on the Yucatan Península, Mexico. In: Kennish MJ, Paerl HW (eds) Coastal lagoons. Critical habitats of environmental change. Taylor and Francis Group, Boca Raton, pp 283–305
  58. Nagelkerken I, Roberts CV, Van Der Velde G, Dorenbosch M, Van Riel MC, De La Moriniere EC, Nienhuis PH (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305
  59. Nolan BT, Stoner JD (1995) Nutrients in groundwaters of the conterminous United States 1992–1995. Environ Sci Technol 34:1156–1165
  60. Null KA, Dimova NT, Knee KL, Esser BK, Swarzenski PW, Singleton MJ, Stacey M, Paytan A (2012) Submarine groundwater discharge-derived nutrient loads to San Francisco Bay: implications to future. Estuar Coast Shelf Sci 35:1299–1315
  61. Null KA, Knee KL, Crook ED, de Sieyes NR, Rebolledo-Vieyra M, Hernández-Terrones L, Paytan A (2014) Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Cont Shelf Res 77:38–50. https://doi.org/10.1016/j.csr.2014.01.011 [DOI: 10.1016/j.csr.2014.01.011]
  62. Oehler T, Bakti H, Lubis RF, Purwoarminta A, Delinnom R, Moosdorf N (2019) Nutrient dynamics in submarine groundwater discharge through a coral reef. Limnol Oceanogr, Western Lombok, Indonesia. https://doi.org/10.1002/lno.11240 [DOI: 10.1002/lno.11240]
  63. Oehler T, Eiche E, Putra D, Adyasari D, Hennig H, Mallast U, Moosdorf N (2018) Seasonal variability of land-ocean groundwater nutrient fluxes from a tropical karstic region (southern Java, Indonesia). J Hydrol 565:662–671. https://doi.org/10.1016/J.JHYDROL.2018.08.077 [DOI: 10.1016/J.JHYDROL.2018.08.077]
  64. Papritz A, Moyeed RA (1999) Linear and non-linear kriging methods: Tools for monitoring soil pollution. In: Barnett V, Turkman K, Stein A (eds) Statistics for the environment, vol 4: Statistical aspects of health and the environment:. Wiley, Chichester, pp 303–336
  65. Parra SM, Mariño-Tapia I, Enriquez C, Valle-Levinson A (2014) Variations in turbulent kinetic energy at a point source submarine groundwater discharge in a reef lagoon. Ocean Dyn 64:1601–1614. https://doi.org/10.1007/s10236-014-0765-y [DOI: 10.1007/s10236-014-0765-y]
  66. Pavlidou A, Papadopoulos VP, Hatzianestis I, Simboura N, Patiris D, Tsabaris C (2014) Chemical inputs from a karstic submarine groundwater discharge (SGD) into an oligotrophic Mediterranean coastal area. Sci Total Environ 488–489:1–13. https://doi.org/10.1016/j.scitotenv.2014.04.056 [DOI: 10.1016/j.scitotenv.2014.04.056]
  67. Paytan A, Shellenbarger GG, Street JH, Gonea ME, Davis K, Young MB, Moore WS (2006) Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol Oceanogr. https://doi.org/10.4319/lo.2006.51.1.0343
  68. Peng S (2015) The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: temporal–spatial variations, sources, pollution statuses, and ecological risks. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2015.03.032
  69. Primpas I, Tsirtsis G, Karydis M, Kokkoris GD (2010) Principal component analysis: development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecol Indic 10:178–83
  70. Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione JF, Goyet C, Moutin T, Prieur L (2011) Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea. Biogeosciences 8:883–899
  71. Redfield AC (1934) On the proportions of organic derivatives in seawater and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnson memorial volume. Liverpool Univ. Press, Liverpool, pp 177–192
  72. Rey-Villiers N, Sánchez A, Caballero-Aragon H, González-Díaz P (2020) Spatio temporal variation in octocoral assemblages along a water quality gradient in the northwestern region of Cuba. Mar Pollut Bull 153:110981. https://doi.org/10.1016/j.marpolbul.2020.110981 [DOI: 10.1016/j.marpolbul.2020.110981]
  73. Rodellas V, Garcia-Orellana J, Masqué P, Feldman M, Weinstein Y (2015) Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci USA 112:3926–3930. https://doi.org/10.1073/pnas.1419049112 [DOI: 10.1073/pnas.1419049112]
  74. Rodellas V, Stieglitz TC, Andrisoa A, Cook PG, Raimbault P,bTamborski JJ, van Beek P, Radakovitch O (2018) Groundwater-driven nutrient inputs to coastal lagoons: the relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci Total Environ 642 764–780.
  75. Romero I, Falco S, del Rio JG, Rodilla M (2007) Comportamiento del nitrógeno y fósforo en el estuario y en la pluma de río Ebro. Ingeniera del Agua 14:48–56
  76. Sánchez A, Anguas-Cabrera D, Camacho-Cruz K, Ortiz-Hernández MC, Aguíñiga-García S (2020) Spatial and temporal variation of the δN in Thalassia testudinum in the Mexican Caribbean (2009–2017). Mar Freshw Res 71(8):905–912. https://doi.org/10.1071/MF19105 [DOI: 10.1071/MF19105]
  77. Sánchez A, Gonzalez-Jones P, Camacho-Cruz KA, Anguas-Cabrera D, Ortiz-Hernández MC, Rey-Villiers N (2023) Influence of pelagic sargassum influx on the δN in Thalassia testudinum of the Mexican Caribbean coastal ecosystem. Mar Pollut Bull 192:115091. https://doi.org/10.1016/j.marpolbul.2023.115091 [DOI: 10.1016/j.marpolbul.2023.115091]
  78. Sánchez A, Ortiz-Hernández MC, Talavera-Sáenz A, Aguíñiga García S (2013) Stable nitrogen isotopes in the turtle grass Thalassia testudinum from the Mexican Caribbean: Implications of' anthropogenic development. Estuar Coast S 135:86–93. https://doi.org/10.1016/j.ecss.2013.01.02.1 [DOI: 10.1016/j.ecss.2013.01.02.1]
  79. Santos IR, Burnett WC, Dittmar T, Suryaputra IGNA, Chanton J (2009) Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary. Geochim Cosmochim Acta 73:1325–1339
  80. Santos IR, Chen X, Lecher AL, Sawyer AH, Moosdorf N, Rodellas V, Tamborski J, Cho HM, Dimova N, Sugimoto R, Bonaglia S, Li H, Hajati MC, Li L (2021) Submarine groundwater dischargee impacts on coastal nutrient biogeochemistry. Nat Rev Earth Environ 2:307–323. https://doi.org/10.1038/s43017-021-00152-0 [DOI: 10.1038/s43017-021-00152-0]
  81. Schmitter-Soto JJ, Comín FA, Escobar-Briones E, Herrera-Silveira J, Alcocer J, Suárez-Morales E, Elías-Guitiérrez M, Díaz-Arce V, Marín LE, Steinich B (2002) Hydrogeochmical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467:217–228
  82. Secretaria de Turismo (2022) Indicadores turísticos https://qroo.gob.mx/sedetur/indicadores-turisticos Accessed 8 de July 2023.
  83. Selvam S, Muthukumar P, Priyadarsi DR, Venkatramanan S, Chung SY, Elzain HE, Muthusamy S, Jesuraja K (2022) Submarine groundwater discharge and associated nutrient influx in surroundings of the estuary region at Gulf of Mannar coast. Chemosphere, Indian Ocean. https://doi.org/10.1016/j.chemosphere.2022.135271 [DOI: 10.1016/j.chemosphere.2022.135271]
  84. Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86. https://doi.org/10.1016/j.jhydrol.2004.02.018 [DOI: 10.1016/j.jhydrol.2004.02.018]
  85. Smart PL, Beddows PA, Coke J, Doerr S, Smith S, Whitaker FF (2006) Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry—a tribute volume to Derek C. Ford and William B. White: Geological Society of America Special Paper 404, pp 105–128. https://doi.org/10.1130/2006.2404(10) [DOI: 10.1130/2006.2404(10)]
  86. Spiteri C, Slomp CP, Regnier P, Meile C, Van Cappellen P (2007) Modelling the geochemical fate and transport of wastewater-derived phosphorus in contrasting groundwater systems. J Contam Hydrol 92:87–108 [PMID: 17292999]
  87. Spiteri C, Slomp CP, Tuncay K, Meile C (2008) Modeling biogeochemical processes in subterranean estuaries: effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients. Water Resour Res 44:W02430
  88. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Fish Res Board Can Bull 167:127–139
  89. Szymczycha B, Vogler S, Pempkowiak J (2012) Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. Sci Total Environ 438:86–93 [PMID: 22975306]
  90. Tait DR, Erler DV, Santos IR, Cyronak TJ, Morgenstern U, Eyre BD (2014) The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Mar Chem 166:36–47
  91. Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Process 16:2115–2129
  92. Tapia-González FU, Herrera-Silveira J, Aguirre-Macedo M (2008) Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatán Peninsula. Estuar Coast Shelf Sci 76:418–430. https://doi.org/10.1016/j.ecss.2007.07.025 [DOI: 10.1016/j.ecss.2007.07.025]
  93. Tett P, Gowen R, Mills D, Fernandes T, Gilpin L, Huxham M, Kennington K, Read P, Service M, Wilkinson M, Malcolm S (2007) Defining and detecting undesirable disturbance in the context of marine eutrophication. Mar Pollut Bull 55:282–297 [PMID: 17011591]
  94. Tiessen H (1995) Phosphorus in the global environment, transfers, cycles and management. SCOPE, vol. 54. Wiley, New York, p 462
  95. Valiela I, Foreman K, LaMontagne M, Hersh D, Costa J, Peckol P, DeMeo-Andreson B, D’Avanzo C, Babione M, Sham CH, Brawley J, Lajtha K (1992) Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15:443–457. https://doi.org/10.2307/1352389 [DOI: 10.2307/1352389]
  96. Vollenweider R, Giovanardi F, Montanari G, Rinaldi A (1998) Characterization of the trophic conditions of marine coastal waters, with special reference to the NW Adriatic Sea: proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9(3):329–357
  97. Vuorio K, Lagus A, Lehtimaki JM, Suomela J, Helminen H (2005) Phytoplankton community responses to nutrient and iron enrichment under dif- ferent nitrogen to phosphorus ratios in the northern Baltic Sea. J Exp Mar Biol Ecol 322:39e52
  98. Waldron SP, Tatner P, Jack I, Arnott C (2001) The impact of sewage discharge in a marine embayment: a stable isotope reconnaissance. Estuar Coast Shelf Sci 52:111e115
  99. Wang DX (2015) Water quality evaluation of Xinyang section of Huaihe River mainstream based on single factor evaluation method. Henan Water Resour South North Water Divers 12:93–94
  100. Wang G, Wang S, Wang Z, Jing W, Yi X, Zhang Z, Tan E, Dai M (2018) Tidial variability of nutrients inn a coastal coral reef system influenced by groundwater. Biogeosciences 15:997–1009. https://doi.org/10.5194/bg-15-997-2018 [DOI: 10.5194/bg-15-997-2018]
  101. Wang X, Du J, Ji T, Wen T, Liu S, Zhang J (2014) An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay—a typical multi-species culture ecosystem in China. Mar Chem 167. https://doi.org/10.1016/j.marchem.2014.07.002
  102. Wang Y, Liu D, Xiao W, Zhou P, Tian C, Zhang C, Du J, Goo H, Wang B (2021) Coastal eutrophication in China: trends, sources and ecological effects. Harmful Algae. https://doi.org/10.1016/j.hal.2021.102058
  103. Wang YM, Zhang X, Wu YF (2020) Eutrophication assessment based on the cloud matter element model. Int J Environ Res Public Health 17:334 [PMID: 31947780]
  104. Ward-Paige CA, Risk MJ, Sherwood OA (2005) Reconstruction of nitrogen sources on coral reefs: d15N and d13C in gorgonians from Florida reef tract. Mar Ecol Prog Ser 296:155–163
  105. Xiao J, Jin Z, Wang J (2014) Geochemistry of trace elements and water quality assessment of natural water within the Tarim River Basin in the extreme arid region, NW China. J Geochem Explor 136:118–126
  106. Yoshioka PM, Yoshioka BB (1991) A comparison of the survivorship and growth of shallow-water gorgonian species if Puerto Rico. Mar Ecol Prog Ser 69:253–260
  107. Young MB, Gonneea ME, Fong DA, Moore WS, Herrera-Silveira J, Paytan A (2008) Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Mar Chem 109:377–394. https://doi.org/10.1016/j.marchem.2007.07.010 [DOI: 10.1016/j.marchem.2007.07.010]
  108. Zhang H, Li WJ, Miao PP, Sun BW, Kong FQ (2020) Risk grade assessment of sudden water pollution based on analytic hierarchy process and fuzzy comprehensive evaluation. Environ Sci Pollut R 27:469–481

Grants

  1. SIP20210421/Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional
  2. 20220735/Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional

Word Cloud

Created with Highcharts 10.0.0trophicstatetidereefnitrogenneapspringCenotelagoongroundwaterSGDassociatedphosphorususingKarydisIndexδNbenthicorganismsManatíMexicanCaribbeanphosphateenrichmenttidesdifferencesobservedconditionSubmarinedischargesimportantsourcesnutrientslandoceanscangenerateeutrophicationconditionsstudyaimsanalyzebehaviormixingcurvemethodexaminevariationevaluatetraceoriginNovemberJanuaryNohoch-TeekNitrogenparticularlynoticeablelowareasinfluencednitrateindicatingeu-mesotrophicmesotrophicHoweversignificantammoniumoligo-mesotrophicnitritescompoundsoligotrophicexhibitedsimilarpatterndifferentspatialvariationssystemslimitingnutrientsuggestedanthropogenicuptakeseveralVariabilitycoastalsystemsubmarinedischargeAnthropogenicpollutionKarstNitratesδ15N

Similar Articles

Cited By