Reduced Left Ventricular Function on Cardiac MRI in SLE Patients Correlates with Measures of SLE Disease Activity and Inflammation.

Audrey M Hagiwara, Erica Montano, Gantseg Tumurkhuu, Moumita Bose, Marianne Bernardo, Daniel S Berman, Galen Cook Wiens, Michael D Nelson, Daniel J Wallace, Janet Wei, Mariko Ishimori, C Noel Bairey Merz, Caroline Jefferies
Author Information
  1. Audrey M Hagiwara: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  2. Erica Montano: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  3. Gantseg Tumurkhuu: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  4. Moumita Bose: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  5. Marianne Bernardo: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  6. Daniel S Berman: S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center.
  7. Galen Cook Wiens: Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center.
  8. Michael D Nelson: Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center.
  9. Daniel J Wallace: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  10. Janet Wei: Department of Cardiology, Cedars-Sinai Medical Center.
  11. Mariko Ishimori: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.
  12. C Noel Bairey Merz: Department of Cardiology, Cedars-Sinai Medical Center.
  13. Caroline Jefferies: Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA.

Abstract

Background: Women with SLE have an elevated risk of CVD morbidity and mortality and frequently report chest pain in the absence of obstructive CAD. Echocardiographic studies often demonstrate reduced LV function, correlating with higher disease activity. We used cardiac MRI (cMRI) to investigate the relationship between SLE, related inflammatory biomarkers and cardiac function in female SLE patients.
Methods: Women with SLE reporting chest pain with no obstructive CAD (n=13) and reference controls (n=22) were evaluated using stress-rest cMRI to measure LV structure, function, tissue characteristics, and myocardial perfusion reserve index (MPRI). Coronary microvascular dysfunction (CMD) was defined as MPRI <1.84. Serum samples were analyzed for inflammatory markers. Relationships between clinical and cMRI values of SLE subjects were assessed, and groups were compared.
Results: 40% of SLE subjects had MPRI < 1.84 on cMRI. Compared to controls, SLE subjects had higher LV volumes and mass and lower LV systolic function. SLICC DI was related to worse cardiac function and higher T1. CRP was related to higher cardiac output and a trend to better systolic function, while ESR and fasting insulin were related to lower LV mass. Lower fasting insulin levels correlated with increased ECV.
Conclusions: Among our female SLE cohort, 40% had CMD, and SLICC DI correlated with worse cardiac function and diffuse fibrosis. Higher inflammatory markers and low insulin levels may associate with LV dysfunction. Our findings underline the potential of non-invasive cMRI as a tool for monitoring cardiovascular function in SLE patients.

Keywords

References

  1. Circulation. 2007 Jul 24;116(4):419-26 [PMID: 17620509]
  2. N Engl J Med. 2003 Dec 18;349(25):2399-406 [PMID: 14681505]
  3. J Cardiovasc Thorac Res. 2018;10(4):231-235 [PMID: 30680083]
  4. J Am Heart Assoc. 2020 May 18;9(10):e015393 [PMID: 32406318]
  5. J Rheumatol. 2013 May;40(5):746-7 [PMID: 23637384]
  6. JACC Cardiovasc Imaging. 2019 Oct;12(10):1958-1969 [PMID: 30772231]
  7. Circulation. 2013 Mar 5;127(9):1040-8 [PMID: 23459576]
  8. Lupus Sci Med. 2018 Nov 17;5(1):e000267 [PMID: 30538814]
  9. J Am Heart Assoc. 2021 Jul 6;10(13):e018555 [PMID: 34132099]
  10. Diabetes Care. 2013 Jan;36(1):166-75 [PMID: 23264288]
  11. JPEN J Parenter Enteral Nutr. 2016 May;40(4):475-86 [PMID: 25634161]
  12. Arthritis Care Res (Hoboken). 2011 Feb;63(2):178-83 [PMID: 20740611]
  13. Arthritis Care Res (Hoboken). 2020 Jul;72(7):882-887 [PMID: 31058466]
  14. Nat Rev Cardiol. 2015 Mar;12(3):168-76 [PMID: 25533796]
  15. WMJ. ;115(6):317-21 [PMID: 29094869]
  16. Vessel Plus. 2022;6: [PMID: 35836794]
  17. Arthritis Rheum. 2007 Oct;56(10):3412-9 [PMID: 17907140]
  18. Circulation. 2017 Mar 14;135(11):1075-1092 [PMID: 28289007]
  19. J Am Heart Assoc. 2015 Sep 15;4(9):e002188 [PMID: 26374295]
  20. Front Cardiovasc Med. 2022 Apr 15;9:867155 [PMID: 35498009]
  21. J Cardiovasc Magn Reson. 2018 Feb 22;20(1):14 [PMID: 29471856]
  22. JACC Cardiovasc Imaging. 2018 Feb;11(2 Pt 1):260-274 [PMID: 29413646]
  23. Arthritis Rheum. 1992 Jun;35(6):630-40 [PMID: 1599520]
  24. Quant Imaging Med Surg. 2022 May;12(5):2947-2960 [PMID: 35502373]
  25. Cytokine Growth Factor Rev. 2020 Apr;52:34-44 [PMID: 31831339]
  26. Circulation. 1993 Mar;87(3):755-63 [PMID: 8443896]
  27. Eur Heart J. 2008 Mar;29(6):741-7 [PMID: 18204091]
  28. Curr Rheumatol Rep. 2021 Feb 10;23(3):16 [PMID: 33569681]
  29. Indian Heart J. 2013 Jan-Feb;65(1):30-9 [PMID: 23438610]
  30. Arthritis Rheum. 2012 Aug;64(8):2677-86 [PMID: 22553077]
  31. Lupus Sci Med. 2019 Jun 29;6(1):e000330 [PMID: 31321063]
  32. Crit Care Med. 2007 Sep;35(9 Suppl):S519-23 [PMID: 17713402]
  33. Circulation. 1991 Sep;84(3 Suppl):I167-76 [PMID: 1884482]
  34. Rheumatology (Oxford). 2015 Nov;54(11):1976-81 [PMID: 26106213]
  35. JACC Cardiovasc Imaging. 2011 Jan;4(1):27-33 [PMID: 21232700]
  36. Eur Heart J Cardiovasc Imaging. 2022 Aug 22;23(9):e308-e322 [PMID: 35808990]
  37. Arthritis Care Res (Hoboken). 2014 Apr;66(4):608-16 [PMID: 24106157]
  38. Autoimmun Rev. 2006 Nov;6(1):48-53 [PMID: 17110317]
  39. JACC Cardiovasc Imaging. 2021 Mar;14(3):602-611 [PMID: 33248966]
  40. Am Heart J. 1993 Apr;125(4):1117-22 [PMID: 8465737]
  41. Am J Epidemiol. 1997 Mar 1;145(5):408-15 [PMID: 9048514]
  42. Circ Cardiovasc Imaging. 2015 Apr;8(4): [PMID: 25801710]
  43. Bull World Health Organ. 1962;27:645-58 [PMID: 13974778]
  44. Arthritis Care Res (Hoboken). 2018 Jan;70(1):114-124 [PMID: 28320046]
  45. J Am Coll Cardiol. 2008 Dec 16;52(25):2148-55 [PMID: 19095132]
  46. Circ Cardiovasc Imaging. 2017 Mar;10(3): [PMID: 28264868]
  47. Curr Atheroscler Rep. 2023 Aug;25(8):435-446 [PMID: 37338666]
  48. J Autoimmun. 2020 Jun;110:102374 [PMID: 31812331]

Grants

  1. N01 HV068161/NHLBI NIH HHS
  2. R03 AG032631/NIA NIH HHS
  3. UL1 TR000124/NCATS NIH HHS
  4. N01 HV068164/NHLBI NIH HHS
  5. M01 RR000425/NCRR NIH HHS
  6. UL1 TR001881/NCATS NIH HHS
  7. R01 AI164504/NIAID NIH HHS
  8. R01 HL146158/NHLBI NIH HHS
  9. R01 HL153500/NHLBI NIH HHS
  10. N01HV68163/NHLBI NIH HHS
  11. N01HV68162/NHLBI NIH HHS
  12. R01 HL090957/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0SLEfunctionLVcardiaccMRIhigherrelatedinflammatoryMPRIsubjectsinsulinWomenchestpainobstructiveCADMRIfemalepatientscontrolsCoronarydysfunctionCMD84markers40%masslowersystolicSLICCDIworsefastinglevelscorrelatedBackground:elevatedriskCVDmorbiditymortalityfrequentlyreportabsenceEchocardiographicstudiesoftendemonstratereducedcorrelatingdiseaseactivityusedinvestigaterelationshipbiomarkersMethods:reportingn=13referencen=22evaluatedusingstress-restmeasurestructuretissuecharacteristicsmyocardialperfusionreserveindexmicrovasculardefined<1SerumsamplesanalyzedRelationshipsclinicalvaluesassessedgroupscomparedResults:<1ComparedvolumesT1CRPoutputtrendbetterESRLowerincreasedECVConclusions:AmongcohortdiffusefibrosisHigherlowmayassociatefindingsunderlinepotentialnon-invasivetoolmonitoringcardiovascularReducedLeftVentricularFunctionCardiacPatientsCorrelatesMeasuresDiseaseActivityInflammationMicrovascularDysfunctionMyocardialPerfusionReserveIndexSystemiclupusErythematosus

Similar Articles

Cited By (2)