Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing.

A Ali Heydari, Suzanne S Sindi
Author Information

Abstract

Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.

References

  1. Cell. 2019 Dec 12;179(7):1647-1660.e19 [PMID: 31835037]
  2. Nucleic Acids Res. 2021 May 21;49(9):e50 [PMID: 33544846]
  3. Immunity. 2021 Jan 12;54(1):164-175.e6 [PMID: 33382973]
  4. Nat Commun. 2021 Nov 1;12(1):6278 [PMID: 34725363]
  5. Cell. 2020 Dec 10;183(6):1665-1681.e18 [PMID: 33188776]
  6. Biotech Histochem. 2021 Apr;96(3):191-196 [PMID: 32580652]
  7. Nat Commun. 2018 Nov 21;9(1):4906 [PMID: 30464173]
  8. Cells. 2020 Jul 22;9(8): [PMID: 32707839]
  9. Elife. 2017 Dec 05;6: [PMID: 29206104]
  10. Exp Mol Med. 2020 Sep;52(9):1428-1442 [PMID: 32929225]
  11. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  12. Nucleic Acids Res. 2021 Dec 2;49(21):e122 [PMID: 34500471]
  13. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  14. Science. 2019 Mar 29;363(6434):1463-1467 [PMID: 30923225]
  15. Bioinformatics. 2020 Aug 15;36(16):4415-4422 [PMID: 32415966]
  16. Science. 1998 Apr 24;280(5363):585-90 [PMID: 9554849]
  17. Mol Syst Biol. 2021 Jun;17(6):e10108 [PMID: 34057817]
  18. Nat Commun. 2019 Jan 23;10(1):390 [PMID: 30674886]
  19. IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232 [PMID: 30703038]
  20. Sci Rep. 2016 Nov 16;6:37137 [PMID: 27849009]
  21. Commun Biol. 2020 Oct 9;3(1):565 [PMID: 33037292]
  22. Nat Mach Intell. 2020 Oct;2(10):607-618 [PMID: 33817554]
  23. BMC Genomics. 2022 Jun 10;23(1):434 [PMID: 35689177]
  24. Nat Methods. 2022 May;19(5):534-546 [PMID: 35273392]
  25. Front Genet. 2021 Mar 23;12:636743 [PMID: 33833776]
  26. Cell Metab. 2021 Sep 7;33(9):1869-1882.e6 [PMID: 34380013]
  27. Nature. 2007 Jan 11;445(7124):168-76 [PMID: 17151600]
  28. Nat Med. 2021 May;27(5):904-916 [PMID: 33879890]
  29. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  30. Nature. 2021 Oct;598(7879):137-143 [PMID: 34616063]
  31. Nat Commun. 2022 Jan 10;13(1):181 [PMID: 35013299]
  32. Sci Rep. 2016 May 17;6:26001 [PMID: 27184229]
  33. Nat Biotechnol. 2022 Sep;40(9):1349-1359 [PMID: 35501392]
  34. Nat Commun. 2018 Sep 25;9(1):3894 [PMID: 30254269]
  35. Science. 2017 Oct 13;358(6360):194-199 [PMID: 28860209]
  36. Nat Biotechnol. 2021 Nov;39(11):1375-1384 [PMID: 34083791]
  37. Bioessays. 2020 Oct;42(10):e1900221 [PMID: 32363691]
  38. Bioinformatics. 2022 Apr 12;38(8):2194-2201 [PMID: 35179571]
  39. Nat Methods. 2008 Oct;5(10):877-9 [PMID: 18806792]
  40. Mol Cell. 2015 May 21;58(4):610-20 [PMID: 26000846]
  41. Biomed Pharmacother. 2023 Sep;165:115077 [PMID: 37393865]
  42. Nature. 2021 Aug;596(7871):211-220 [PMID: 34381231]
  43. Neuroimage. 2014 Oct 1;99:166-79 [PMID: 24879923]
  44. Nat Methods. 2020 Feb;17(2):193-200 [PMID: 31988518]
  45. Methods Mol Biol. 2020;2148:313-329 [PMID: 32394391]
  46. Cell. 2020 Aug 20;182(4):976-991.e19 [PMID: 32702314]
  47. Cell. 2019 Jun 27;178(1):229-241.e16 [PMID: 31230717]
  48. Cell. 2018 Nov 1;175(4):1031-1044.e18 [PMID: 30318149]
  49. Nat Biotechnol. 2018 Nov;36(10):983-987 [PMID: 30247488]
  50. Bioinformatics. 2020 Jan 15;36(2):533-538 [PMID: 31359028]
  51. Nat Methods. 2018 Nov;15(11):932-935 [PMID: 30377364]
  52. Immunity. 2020 Dec 15;53(6):1296-1314.e9 [PMID: 33296687]
  53. Science. 2018 Jul 27;361(6400): [PMID: 29930089]
  54. Nat Biotechnol. 2014 Oct;32(10):1053-8 [PMID: 25086649]
  55. Appl Microsc. 2021 Apr 9;51(1):4 [PMID: 33835321]
  56. J Exp Clin Cancer Res. 2021 Mar 1;40(1):81 [PMID: 33648534]
  57. Sci Adv. 2020 Jun 26;6(26):eabb3446 [PMID: 32637622]
  58. Sci Rep. 2019 Dec 12;9(1):18975 [PMID: 31831833]
  59. Front Oncol. 2018 Dec 07;8:582 [PMID: 30581771]
  60. Science. 2019 Apr 5;364(6435):89-93 [PMID: 30948552]
  61. Mol Cell. 2019 Jan 3;73(1):130-142.e5 [PMID: 30472192]
  62. Sci Immunol. 2021 Jan 21;6(55): [PMID: 33478949]
  63. Biomicrofluidics. 2017 Mar 10;11(2):021501 [PMID: 28396707]
  64. Nat Methods. 2014 Jun;11(6):637-40 [PMID: 24747814]
  65. Cell. 2020 Jul 23;182(2):497-514.e22 [PMID: 32579974]
  66. Nat Biotechnol. 2018 Oct 29;: [PMID: 30371680]
  67. IEEE/ACM Trans Comput Biol Bioinform. 2021 Mar-Apr;18(2):562-574 [PMID: 31251191]
  68. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  69. Nat Protoc. 2018 Nov;13(11):2501-2534 [PMID: 30353172]
  70. Cell. 2019 Jun 13;177(7):1873-1887.e17 [PMID: 31178122]
  71. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  72. Nat Biotechnol. 2022 May;40(5):661-671 [PMID: 35027729]
  73. Nature. 2021 Dec;600(7888):285-289 [PMID: 34789876]
  74. Cell Syst. 2016 Sep 28;3(3):221-237.e9 [PMID: 27641957]
  75. Cell. 2021 Feb 4;184(3):810-826.e23 [PMID: 33406409]
  76. Genome Biol. 2022 Apr 14;23(1):97 [PMID: 35422018]
  77. Nat Methods. 2018 Dec;15(12):1053-1058 [PMID: 30504886]
  78. Cell. 2019 Mar 7;176(6):1265-1281.e24 [PMID: 30827681]
  79. Nat Commun. 2021 Mar 12;12(1):1660 [PMID: 33712587]
  80. Nat Commun. 2020 Jan 9;11(1):166 [PMID: 31919373]
  81. Genome Med. 2017 Aug 18;9(1):75 [PMID: 28821273]
  82. Cell Rep. 2018 Jan 16;22(3):600-610 [PMID: 29346760]
  83. Neural Netw. 1998 Jan;11(1):15-37 [PMID: 12662846]
  84. Nat Rev Genet. 2019 Nov;20(11):631-656 [PMID: 31341269]
  85. Nature. 2019 Dec;576(7785):132-137 [PMID: 31748748]
  86. Nat Methods. 2013 Sep;10(9):857-60 [PMID: 23852452]
  87. IEEE Trans Neural Netw. 1995;6(4):911-7 [PMID: 18263379]
  88. Nat Methods. 2021 Nov;18(11):1352-1362 [PMID: 34711971]
  89. Cold Spring Harb Symp Quant Biol. 2017;82:57-70 [PMID: 29183987]
  90. Nucleic Acids Res. 2020 Nov 4;48(19):e112 [PMID: 32990747]
  91. Nat Methods. 2018 May;15(5):339-342 [PMID: 29553578]
  92. Nat Genet. 2021 Dec;53(12):1698-1711 [PMID: 34857954]
  93. Nat Neurosci. 2016 Feb;19(2):335-46 [PMID: 26727548]
  94. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  95. Arterioscler Thromb Vasc Biol. 2021 Feb;41(2):585-600 [PMID: 33327741]
  96. Nat Neurosci. 2021 Mar;24(3):425-436 [PMID: 33558695]
  97. Nat Rev Genet. 2021 Feb;22(2):71-88 [PMID: 33168968]
  98. Cytometry A. 2018 Jun;93(6):620-627 [PMID: 29710381]
  99. Nat Biotechnol. 2022 Sep;40(9):1360-1369 [PMID: 35449415]
  100. Cell. 2020 Dec 10;183(6):1479-1495.e20 [PMID: 33171100]
  101. Nat Protoc. 2015 Mar;10(3):442-58 [PMID: 25675209]
  102. Nat Biotechnol. 2020 Mar;38(3):333-342 [PMID: 31932730]
  103. Wiley Interdiscip Rev Syst Biol Med. 2017 Mar;9(2): [PMID: 28001340]
  104. Nat Genet. 2021 Sep;53(9):1334-1347 [PMID: 34493872]
  105. Nature. 2014 May 15;509(7500):371-5 [PMID: 24739965]
  106. Front Physiol. 2022 Jan 06;12:809346 [PMID: 35069263]
  107. Bioinformatics. 2020 Apr 1;36(7):2293-2294 [PMID: 31808789]
  108. Genome Biol. 2021 Mar 8;22(1):78 [PMID: 33685491]
  109. Nat Biotechnol. 2020 Jun;38(6):737-746 [PMID: 32341560]
  110. Nat Methods. 2021 Nov;18(11):1342-1351 [PMID: 34711970]
  111. Nat Commun. 2018 Jun 20;9(1):2419 [PMID: 29925878]
  112. Cell Rep. 2020 Aug 25;32(8):108077 [PMID: 32846134]
  113. Comput Struct Biotechnol J. 2021 Jul 01;19:3829-3841 [PMID: 34285782]
  114. Comput Struct Biotechnol J. 2021 Jan 19;19:961-969 [PMID: 33613863]
  115. Nat Biotechnol. 2015 May;33(5):503-9 [PMID: 25867922]
  116. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33480403]
  117. Cell. 2018 Aug 9;174(4):982-998.e20 [PMID: 29909982]
  118. Vis Comput. 2022;38(8):2939-2970 [PMID: 34131356]
  119. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  120. Cell. 2018 Feb 22;172(5):1091-1107.e17 [PMID: 29474909]
  121. Nat Biomed Eng. 2020 Aug;4(8):827-834 [PMID: 32572199]
  122. Commun Biol. 2022 Feb 11;5(1):129 [PMID: 35149753]
  123. Science. 2021 Jan 29;371(6528): [PMID: 33509999]
  124. Nat Methods. 2021 Jan;18(1):15-18 [PMID: 33408402]
  125. Quant Biol. 2020 Mar;8(1):78-94 [PMID: 32274259]
  126. IEEE Trans Med Imaging. 2019 Feb 04;: [PMID: 30716034]
  127. Trends Genet. 2014 Sep;30(9):418-26 [PMID: 25108476]
  128. Exp Mol Med. 2018 Aug 7;50(8):1-14 [PMID: 30089861]
  129. Nature. 2018 Oct;562(7727):367-372 [PMID: 30283141]
  130. Nat Commun. 2020 May 11;11(1):2338 [PMID: 32393754]
  131. Bioinformatics. 2017 Nov 01;33(21):3423-3430 [PMID: 29036374]
  132. Nature. 2019 Apr;568(7751):235-239 [PMID: 30911168]
  133. Nucleic Acids Res. 2018 Feb 28;46(4):e22 [PMID: 29190363]
  134. Nature. 2021 Jul;595(7865):107-113 [PMID: 33915569]
  135. Nat Commun. 2020 Apr 29;11(1):2084 [PMID: 32350282]
  136. Nature. 2019 Feb;566(7744):388-392 [PMID: 30760929]
  137. Int J Mol Sci. 2015 Jul 24;16(8):16897-919 [PMID: 26213926]
  138. Genome Res. 2021 Oct;31(10):1706-1718 [PMID: 34599004]
  139. Nat Methods. 2010 May;7(5):395-7 [PMID: 20383134]
  140. Nat Methods. 2018 May;15(5):343-346 [PMID: 29553579]
  141. BMC Biol. 2020 Oct 19;18(1):144 [PMID: 33076915]
  142. Nat Biotechnol. 2022 Apr;40(4):517-526 [PMID: 33603203]
  143. Nat Protoc. 2020 Apr;15(4):1484-1506 [PMID: 32103204]
  144. Science. 2019 Sep 20;365(6459): [PMID: 31488706]
  145. Anat Rec (Hoboken). 2014 Aug;297(8):1349-53 [PMID: 24810158]
  146. Proc R Soc Lond B Biol Sci. 1980 Feb 29;207(1167):187-217 [PMID: 6102765]
  147. J Pers Med. 2021 Jul 27;11(8): [PMID: 34442365]
  148. Nat Methods. 2019 Oct;16(10):987-990 [PMID: 31501547]
  149. Genome Biol. 2021 May 10;22(1):145 [PMID: 33971932]
  150. Nucleic Acids Res. 2020 Jun 4;48(10):e55 [PMID: 32196115]
  151. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Word Cloud

Created with Highcharts 10.0.0STspatialtechnologiessequencingtraditionaltoolsmanylearningDLmodelstranscriptomicssingle-cellscRNAseqgeneexpressionresolutioncellulartissueresearcherscomplexanalysisHoweveranalyzingexistingST-specificmethodsapplicationsspatiallyresolvednewstate-of-the-artSpatialrapidlybecomingextensionRNAholdingpotentialprofilingmaintainingcompositionswithinprofilesorganizationenablesbetterunderstandinteractionsheterogeneityprovidinginsightbiologicalprocessespossibleDatageneratedinherentlynoisyhigh-dimensionalsparsemulti-modalincludinghistologicalimagescountmatricesetcthusrequiringspecializedcomputationalaccuraterobuststudiescurrentlyutilizeinadequatedatasetshandbuiltuponstatisticalmachineframeworksshownsub-optimalduescalemulti-modalitylimitationsdatasensitivitycoverageGivenintricaciesdevelopeddeep-basedalleviatechallengesincludealignmentreconstructionclusteringamongothersnascentremainlargelyunderexploredreviewprovideoverviewdelvingdeeperDL-basedapproachesdiscussfrontiersopenquestionsfieldhighlightdomainsanticipatetransformationalDeeptranscriptomics:Learningnextnext-generation

Similar Articles

Cited By (13)