Plants buffer some of the effects of a pair of cadmium-exposed zebrafish on the un-exposed majority.

Delia S Shelton, Piyumika S Suriyampola, Zoe M Dinges, Stephen P Glaholt, Joseph R Shaw, Emília P Martins
Author Information
  1. Delia S Shelton: Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33134, USA. Electronic address: dshelton@miami.edu.
  2. Piyumika S Suriyampola: School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA.
  3. Zoe M Dinges: Department of Biology, Indiana University, 1001 E 3rd St, Bloomington, IN 47405, USA.
  4. Stephen P Glaholt: O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA.
  5. Joseph R Shaw: O'Neill School of Public and Environmental Affairs, Indiana University, 1315 E 10th St, Bloomington, IN 47405, USA.
  6. Emília P Martins: School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA.

Abstract

Certain individuals have a disproportionate effect on group responses. Characteristics may include susceptibility to pollutants, such as cadmium (Cd), a potent trace metal. Here, we show how a pair of Cd-exposed individuals can impact the behavior of unexposed groups. We used behavioral assessments to characterize the extent of the effects of the Cd-exposed individuals on group boldness, cohesion, foraging, activity, and responses to plants. We found that groups with a pair of Cd-exposed fish remained closer to novel stimuli and plants than did groups with untreated (control) fish. The presence of plants reduced Cd-induced differences in shoal cohesion and delays feeding in male shoals. Shoals with Cd- and water-treated fish were equally active. The results suggest that fish acutely exposed to environmentally relevant Cd concentrations can have profound effects on the un-exposed majority. However, the presence of plants may mitigate the effects of contaminants on some aspects of social behavior.

Keywords

References

  1. Front Vet Sci. 2022 Oct 12;9:980364 [PMID: 36311662]
  2. Cell Mol Life Sci. 2021 Dec 22;79(1):8 [PMID: 34936027]
  3. Zebrafish. 2020 Aug;17(4):243-252 [PMID: 32513074]
  4. Chemosphere. 2023 Jun;325:138432 [PMID: 36933370]
  5. Proc Biol Sci. 2021 Apr 28;288(1949):20210396 [PMID: 33878924]
  6. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8913-7 [PMID: 17496139]
  7. Neurosci Biobehav Rev. 2020 Sep;116:426-435 [PMID: 32681940]
  8. Environ Sci Process Impacts. 2020 Dec 16;22(12):2307-2312 [PMID: 33230514]
  9. Ecotoxicol Environ Saf. 2024 Mar 1;272:116089 [PMID: 38354436]
  10. J Comp Psychol. 2011 Aug;125(3):278-85 [PMID: 21707139]
  11. Front Toxicol. 2021 Feb 23;3:629229 [PMID: 35295117]
  12. Sci Total Environ. 2019 Aug 15;678:761-767 [PMID: 31085492]
  13. Environ Toxicol Chem. 2008 Mar;27(3):705-10 [PMID: 17975947]
  14. Trends Ecol Evol. 2015 Oct;30(10):609-621 [PMID: 26411618]
  15. Science. 2018 Nov 23;362(6417):941-945 [PMID: 30467168]
  16. Proc Biol Sci. 2022 Jan 26;289(1967):20212141 [PMID: 35078361]
  17. Int J Environ Res Public Health. 2020 May 26;17(11): [PMID: 32466586]
  18. Front Physiol. 2021 Nov 11;12:754719 [PMID: 34858209]
  19. Trends Neurosci. 2014 May;37(5):264-78 [PMID: 24726051]
  20. J Exp Psychol Anim Behav Process. 2003 Jul;29(3):199-210 [PMID: 12884679]
  21. Environ Health Perspect. 1999 Apr;107(4):309-15 [PMID: 10090711]
  22. Bull Environ Contam Toxicol. 2018 Jan;100(1):82-88 [PMID: 29209857]
  23. Curr Zool. 2017 Apr;63(2):221-227 [PMID: 29491980]
  24. Science. 2013 Feb 15;339(6121):814-5 [PMID: 23413353]
  25. Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):14882-7 [PMID: 26504236]
  26. Sci Total Environ. 2021 Apr 10;764:144288 [PMID: 33385645]
  27. Nature. 2005 Feb 3;433(7025):513-6 [PMID: 15690039]
  28. Environ Health Perspect. 2010 Feb;118(2):182-90 [PMID: 20123617]
  29. Environ Toxicol Pharmacol. 2023 Apr;99:104121 [PMID: 37030645]
  30. Aquat Toxicol. 2017 Oct;191:141-163 [PMID: 28841494]
  31. Nature. 2005 Nov 17;438(7066):355-9 [PMID: 16292310]
  32. Curr Zool. 2017 Apr;63(2):185-194 [PMID: 29491976]
  33. Zebrafish. 2006;3(2):191-201 [PMID: 18248260]
  34. Sci Rep. 2020 Jul 23;10(1):12282 [PMID: 32703965]
  35. R Soc Open Sci. 2017 Sep 27;4(9):170918 [PMID: 28989785]
  36. Trends Ecol Evol. 2012 Aug;27(8):452-61 [PMID: 22727728]
  37. Am J Physiol Endocrinol Metab. 2013 Sep 15;305(6):E727-35 [PMID: 23880315]
  38. Environ Int. 2021 Dec;157:106813 [PMID: 34455190]
  39. Lab Anim (NY). 2009 Aug;38(8):264-9 [PMID: 19626019]
  40. Toxicol Lett. 2003 Jan 31;137(1-2):65-83 [PMID: 12505433]
  41. Bull Environ Contam Toxicol. 2021 Jan;106(1):65-74 [PMID: 33486543]
  42. Environ Toxicol Chem. 2017 Aug;36(8):2147-2154 [PMID: 28120348]
  43. Environ Toxicol Pharmacol. 2023 Jun;100:104119 [PMID: 37028532]
  44. PLoS One. 2011 Mar 23;6(3):e18117 [PMID: 21448294]
  45. Aquat Toxicol. 2024 Mar;268:106862 [PMID: 38359500]
  46. Sci Total Environ. 2019 Nov 1;689:831-842 [PMID: 31280165]
  47. J Comp Psychol. 2015 Feb;129(1):72-7 [PMID: 25419716]
  48. Cognition. 2005 Sep;97(2):121-33 [PMID: 16226559]
  49. Trends Ecol Evol. 2020 Mar;35(3):278-291 [PMID: 31879039]
  50. Neurotoxicol Teratol. 2015 Mar-Apr;48:9-17 [PMID: 25599607]
  51. Ecotoxicol Environ Saf. 2020 Jul 15;198:110666 [PMID: 32361493]
  52. PLoS One. 2012;7(1):e29268 [PMID: 22235278]
  53. Aquat Toxicol. 2021 Dec;241:106003 [PMID: 34706310]
  54. Environ Sci Process Impacts. 2020 Jan 1;22(1):49-65 [PMID: 31898699]
  55. Trends Ecol Evol. 2009 Mar;24(3):127-35 [PMID: 19185386]
  56. Cognition. 2002 Sep;85(2):B51-9 [PMID: 12127704]
  57. PLoS One. 2013;8(1):e55503 [PMID: 23383208]
  58. Toxics. 2021 Jul 12;9(7): [PMID: 34357908]
  59. Zebrafish. 2016 Feb;13(1):1-8 [PMID: 26671510]
  60. Biol Rev Camb Philos Soc. 2023 Jun;98(3):868-886 [PMID: 36691262]
  61. Alcohol Clin Exp Res. 2014 Jul;38(7):2096-104 [PMID: 24819037]
  62. Environ Monit Assess. 2005 Jun;105(1-3):43-67 [PMID: 15952511]
  63. Biol Lett. 2010 Aug 23;6(4):462-5 [PMID: 20164082]
  64. J R Soc Interface. 2013 Jan 09;10(80):20120997 [PMID: 23303223]
  65. J Zool (1987). 2022 Apr;316(4):271-281 [PMID: 35814943]
  66. J Theor Biol. 1971 May;31(2):295-311 [PMID: 5104951]
  67. Philos Trans R Soc Lond B Biol Sci. 2019 Sep 16;374(1781):20180055 [PMID: 31352882]
  68. Sci Total Environ. 2022 Apr 20;818:151784 [PMID: 34808189]
  69. Environ Toxicol Chem. 2011 Jul;30(7):1549-56 [PMID: 21509805]
  70. Sci Total Environ. 2021 Nov 15;795:148776 [PMID: 34328937]
  71. Trends Ecol Evol. 2022 Sep;37(9):789-802 [PMID: 35718586]
  72. Trends Ecol Evol. 2013 Sep;28(9):552-60 [PMID: 23756104]
  73. Environ Pollut. 2021 Jan 15;269:116097 [PMID: 33246768]
  74. Ind Health. 2009 Oct;47(5):487-94 [PMID: 19834257]
  75. Aquat Toxicol. 2004 Jul 14;68(4):369-92 [PMID: 15177953]
  76. Science. 1999 Apr 2;284(5411):99-101 [PMID: 10102827]

Grants

  1. K99 ES030398/NIEHS NIH HHS
  2. R00 ES030398/NIEHS NIH HHS

MeSH Term

Animals
Zebrafish
Cadmium
Social Behavior
Perciformes
Water Pollutants, Chemical

Chemicals

Cadmium
Water Pollutants, Chemical

Word Cloud

Created with Highcharts 10.0.0effectsplantsfishindividualspairCd-exposedbehaviorgroupsgroupresponsesmayCdcancohesionpresenceun-exposedmajorityCertaindisproportionateeffectCharacteristicsincludesusceptibilitypollutantscadmiumpotenttracemetalshowimpactunexposedusedbehavioralassessmentscharacterizeextentboldnessforagingactivityfoundremainedclosernovelstimuliuntreatedcontrolreducedCd-induceddifferencesshoaldelaysfeedingmaleshoalsShoalsCd-water-treatedequallyactiveresultssuggestacutelyexposedenvironmentallyrelevantconcentrationsprofoundHowevermitigatecontaminantsaspectssocialPlantsbuffercadmium-exposedzebrafishBoldnessCadmiumContaminantsGroupZebrafish

Similar Articles

Cited By