Validating the inactivation of viral pathogens with a focus on SARS-CoV-2 to safely transfer samples from high-containment laboratories.

Sankar Prasad Chaki, Melissa M Kahl-McDonagh, Benjamin W Neuman, Kurt A Zuelke
Author Information
  1. Sankar Prasad Chaki: Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States.
  2. Melissa M Kahl-McDonagh: Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States.
  3. Benjamin W Neuman: Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States.
  4. Kurt A Zuelke: Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States.

Abstract

Introduction: Pathogen leak from a high-containment laboratory seriously threatens human safety, animal welfare, and environmental security. Transportation of pathogens from a higher (BSL4 or BSL3) to a lower (BSL2) containment laboratory for downstream experimentation requires complete pathogen inactivation. Validation of pathogen inactivation is necessary to ensure safety during transportation. This study established a validation strategy for virus inactivation.
Methods: SARS-CoV-2 wild type, delta, and omicron variants underwent heat treatment at 95°C for 10 minutes using either a hot water bath or a thermocycler. To validate the inactivation process, heat-treated viruses, and untreated control samples were incubated with A549-hACE2 and Vero E6-TMPRSS2-T2A-ACE2 cells. The cells were monitored for up to 72 hours for any cytopathic effects, visually and under a microscope, and for virus genome replication via RT-qPCR. The quality of post-treated samples was assessed for suitability in downstream molecular testing applications.
Results: Heat treatment at 95°C for 10 minutes effectively inactivated SARS-CoV-2 variants. The absence of cytopathic effects, coupled with the inability of virus genome replication, validated the efficacy of the inactivation process. Furthermore, the heat-treated samples proved to be qualified for COVID-19 antigen testing, RT-qPCR, and whole-genome sequencing.
Discussion: By ensuring the safety of sample transportation for downstream experimentation, this validation approach enhances biosecurity measures. Considerations for potential limitations, comparisons with existing inactivation methods, and broader implications of the findings are discussed.

Keywords

References

  1. Curr Protoc Microbiol. 2020 Jun;57(1):ecpmc105 [PMID: 32475066]
  2. PLoS Comput Biol. 2021 Oct 18;17(10):e1009480 [PMID: 34662338]
  3. J Microbiol. 2020 Oct;58(10):886-891 [PMID: 32989642]
  4. Sci Rep. 2021 Jan 28;11(1):2418 [PMID: 33510320]
  5. PLoS Biol. 2021 Dec 21;19(12):e3001065 [PMID: 34932557]
  6. J Infect Dis. 2020 Oct 1;222(9):1462-1467 [PMID: 32798217]
  7. PLoS Pathog. 2017 Jul 20;13(7):e1006409 [PMID: 28727844]
  8. Front Bioeng Biotechnol. 2023 Mar 01;11:1117316 [PMID: 36937771]
  9. Environ Chem Lett. 2021;19(2):1773-1777 [PMID: 33551702]
  10. Microbiol Spectr. 2022 Jun 29;10(3):e0066522 [PMID: 35638906]
  11. Methods Mol Biol. 2022;2452:441-464 [PMID: 35554920]
  12. PLoS One. 2022 Mar 11;17(3):e0264541 [PMID: 35275928]
  13. J Biosaf Biosecur. 2021 Jun;3(1):1-3 [PMID: 33521591]
  14. J Virol Methods. 2021 Apr;290:114087 [PMID: 33515663]
  15. J Oral Microbiol. 2023 May 17;15(1):2213106 [PMID: 37213664]
  16. J Virol Methods. 2013 Nov;193(2):565-71 [PMID: 23748121]
  17. Front Mol Biosci. 2021 Apr 20;8:637559 [PMID: 33959631]
  18. Clin Microbiol Infect. 2022 Nov;28(11):1486-1491 [PMID: 35640841]
  19. J Gen Virol. 2021 Mar;102(3): [PMID: 33416462]
  20. Methods Mol Biol. 2022;2524:235-248 [PMID: 35821476]
  21. Lancet Microbe. 2023 Jul;4(7):e486 [PMID: 37105204]
  22. Appl Environ Microbiol. 2021 Sep 10;87(19):e0031421 [PMID: 34288702]
  23. Sci Rep. 2022 Feb 21;12(1):2883 [PMID: 35190592]
  24. Viruses. 2020 Jul 07;12(7): [PMID: 32646015]
  25. Nat Rev Microbiol. 2023 Jun;21(6):361-379 [PMID: 37020110]
  26. Biotechnol Bioeng. 2019 Aug;116(8):2095-2102 [PMID: 31038205]
  27. Pathogens. 2022 Feb 19;11(2): [PMID: 35215213]

MeSH Term

Animals
Humans
SARS-CoV-2
COVID-19
Laboratories
COVID-19 Testing

Word Cloud

Created with Highcharts 10.0.0inactivationSARS-CoV-2sampleshigh-containmentsafetydownstreampathogentransportationvalidationviruslaboratorypathogensexperimentationvariantstreatment95°C10minutesprocessheat-treatedcellscytopathiceffectsgenomereplicationRT-qPCRtestingsamplebiosecurityIntroduction:PathogenleakseriouslythreatenshumananimalwelfareenvironmentalsecurityTransportationhigherBSL4BSL3lowerBSL2containmentrequirescompleteValidationnecessaryensurestudyestablishedstrategyMethods:wildtypedeltaomicronunderwentheatusingeitherhotwaterbaththermocyclervalidatevirusesuntreatedcontrolincubatedA549-hACE2VeroE6-TMPRSS2-T2A-ACE2monitored72hoursvisuallymicroscopeviaqualitypost-treatedassessedsuitabilitymolecularapplicationsResults:HeateffectivelyinactivatedabsencecoupledinabilityvalidatedefficacyFurthermoreprovedqualifiedCOVID-19antigenwhole-genomesequencingDiscussion:ensuringapproachenhancesmeasuresConsiderationspotentiallimitationscomparisonsexistingmethodsbroaderimplicationsfindingsdiscussedValidatingviralfocussafelytransferlaboratories

Similar Articles

Cited By (1)