Transcriptome analysis of genes involved in the pathogenesis mechanism of potato virus Y in potato cultivar YouJin.

Tianqi Yang, Xingyue Zhao, Jinjiang Bai, Wenxia Lv, Qi Chen, Jun Hu, Guangjing Liu, Yuanzheng Zhao, Hongyou Zhou, Mingmin Zhao, Hongli Zheng
Author Information
  1. Tianqi Yang: College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.
  2. Xingyue Zhao: College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.
  3. Jinjiang Bai: College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.
  4. Wenxia Lv: Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China.
  5. Qi Chen: Siziwang Banner Agricultural and Livestock Products Quality and Safety Inspection and Testing Station, Siziwang Banner, China.
  6. Jun Hu: Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China.
  7. Guangjing Liu: Inner Mongolia Zhongjia Agricultural Biotechnology Co., Siziwang Banner, China.
  8. Yuanzheng Zhao: Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.
  9. Hongyou Zhou: College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.
  10. Mingmin Zhao: College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.
  11. Hongli Zheng: College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China.

Abstract

Introduction: Potatoes ( L.) can be infected by various viruses, but out of all of viruses, the potato virus Y (PVY) is the most detrimental. Research shows that the potato cultivar YouJin is especially vulnerable to PVY and displays severe symptoms, including leaf vein chlorosis, curled leaf margins, large necrotic spots on the leaf blades, and the growth of small new leaves.
Methods: PVY infection in potato cultivar YouJin was confirmed through symptom observation, RT-PCR, and Western blot analysis. Transcriptome sequencing was used to analyze the genes associated with PVY pathogenesis in this cultivar.
Result: Transcriptome analysis of differential genes was conducted in this study to examine the pathogenesis of PVY on YouJin. The results showed that 1,949 genes were differentially regulated, including 853 upregulated genes and 1,096 downregulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that carbohydrate synthesis and metabolism pathways were suppressed, and electron transferase and hydrolase activities were reduced. Moreover, there were increased expression levels of protein kinase genes. By focusing on plant-pathogen interaction pathways, six core genes all upregulating the WARK family of transcription factors were obtained. Additionally, a constructed PPI network revealed the identification of key modular differential genes, such as downregulated photosynthesis-related protein genes and upregulated AP2/ERF-ERF transcription factors. Functional network enrichment analysis revealed that PVY infection limited RNA metabolism, glutathionylation, and peroxiredoxin activity while triggering the expression of associated defense genes in YouJin. After analyzing the above, 26 DEGs were screened and 12 DEGs were confirmed via RT-qPCR.
Conclusion: These results establish a hypothetical framework for clarifying the pathogenesis of PVY in the YouJin variety of potatoes, which will help design the disease resistance of YouJin.

Keywords

References

  1. Sci Rep. 2017 Jul 7;7(1):4895 [PMID: 28687775]
  2. Front Plant Sci. 2015 Oct 29;6:902 [PMID: 26579152]
  3. Mol Plant Pathol. 2013 Jun;14(5):439-52 [PMID: 23480826]
  4. BMC Plant Biol. 2023 Mar 8;23(1):130 [PMID: 36882678]
  5. Plant Physiol. 2013 Dec;163(4):1598-608 [PMID: 24154620]
  6. Phytochemistry. 2008 Jun;69(9):1795-813 [PMID: 18472115]
  7. Plant Genome. 2016 Jul;9(2): [PMID: 27898839]
  8. Genes (Basel). 2020 Apr 16;11(4): [PMID: 32316258]
  9. J Virol. 2009 Oct;83(19):9720-30 [PMID: 19625399]
  10. Front Plant Sci. 2023 Mar 30;14:1163679 [PMID: 37063211]
  11. Viruses. 2022 Mar 03;14(3): [PMID: 35336930]
  12. Plants (Basel). 2022 Feb 25;11(5): [PMID: 35270104]
  13. BMC Res Notes. 2009 Sep 28;2:197 [PMID: 19785756]
  14. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  15. BMC Genomics. 2015 Sep 19;16:716 [PMID: 26386579]
  16. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  17. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  18. J Exp Bot. 2014 Mar;65(4):1095-109 [PMID: 24420577]
  19. J Plant Physiol. 2022 Sep;276:153779 [PMID: 35952453]
  20. BMC Genomics. 2020 Jan 6;21(1):18 [PMID: 31906869]
  21. Int J Mol Sci. 2009 Jun 23;10(6):2860-2872 [PMID: 19582234]
  22. Arch Virol. 2003 Dec;148(12):2325-40 [PMID: 14648289]
  23. Sci Rep. 2015 Jun 25;5:11585 [PMID: 26108567]
  24. Annu Rev Phytopathol. 2013;51:245-66 [PMID: 23663002]
  25. Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646 [PMID: 36370105]
  26. BMC Genomics. 2015 Jun 20;16:472 [PMID: 26091899]
  27. Nat Biotechnol. 2015 Mar;33(3):290-5 [PMID: 25690850]
  28. Funct Plant Biol. 2020 Sep;47(10):925-936 [PMID: 32454004]
  29. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  30. J Plant Res. 2021 May;134(3):475-495 [PMID: 33616799]
  31. Int J Mol Sci. 2022 Dec 19;23(24): [PMID: 36555841]
  32. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  33. Int J Mol Sci. 2020 Dec 23;22(1): [PMID: 33374758]
  34. Virulence. 2023 Dec;14(1):2233147 [PMID: 37431945]
  35. BMC Genomics. 2016 Oct 7;17(1):788 [PMID: 27717312]
  36. Int J Mol Sci. 2023 Jan 28;24(3): [PMID: 36768826]
  37. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  38. BMC Plant Biol. 2022 May 12;22(1):241 [PMID: 35549883]
  39. Front Plant Sci. 2023 Aug 28;14:1213494 [PMID: 37701805]
  40. J Gen Virol. 2010 Jan;91(Pt 1):294-305 [PMID: 19793907]
  41. Front Microbiol. 2023 Jul 27;14:1232279 [PMID: 37577430]
  42. Virology. 2014 Jan 20;449:207-14 [PMID: 24418554]
  43. Viruses. 2021 Sep 13;13(9): [PMID: 34578401]
  44. J Genet Eng Biotechnol. 2021 Sep 30;19(1):145 [PMID: 34591228]
  45. Crit Rev Biotechnol. 2020 Sep;40(6):750-776 [PMID: 32522044]
  46. Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045 [PMID: 27924042]
  47. Virology. 2005 Jan 20;331(2):232-7 [PMID: 15629767]

Word Cloud

Created with Highcharts 10.0.0genesYouJinpotatoPVYanalysiscultivarpathogenesisvirusYleafTranscriptomevirusesincludinginfectionconfirmedassociateddifferentialresults1upregulateddownregulatedenrichmentmetabolismpathwaysexpressionproteintranscriptionfactorsnetworkrevealedDEGsIntroduction:PotatoesLcaninfectedvariousdetrimentalResearchshowsespeciallyvulnerabledisplaysseveresymptomsveinchlorosiscurledmarginslargenecroticspotsbladesgrowthsmallnewleavesMethods:symptomobservationRT-PCRWesternblotsequencingusedanalyzeResult:conductedstudyexamineshowed949differentiallyregulated853096GeneOntologyGOKyotoEncyclopediaGenesGenomesKEGGindicatedcarbohydratesynthesissuppressedelectrontransferasehydrolaseactivitiesreducedMoreoverincreasedlevelskinasefocusingplant-pathogeninteractionsixcoreupregulatingWARKfamilyobtainedAdditionallyconstructedPPIidentificationkeymodularphotosynthesis-relatedAP2/ERF-ERFFunctionallimitedRNAglutathionylationperoxiredoxinactivitytriggeringdefenseanalyzing26screened12viaRT-qPCRConclusion:establishhypotheticalframeworkclarifyingvarietypotatoeswillhelpdesigndiseaseresistanceinvolvedmechanismRNA-Seqcandidatefunctional

Similar Articles

Cited By