Quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy.

Jiapeng Wang, Hongpeng Wu, Angelo Sampaolo, Pietro Patimisco, Vincenzo Spagnolo, Suotang Jia, Lei Dong
Author Information
  1. Jiapeng Wang: State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.
  2. Hongpeng Wu: State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China.
  3. Angelo Sampaolo: PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, CNR-IFN, Via Amendola 173, 70126, Bari, Italy.
  4. Pietro Patimisco: PolySense Lab, Dipartimento Interateneo di Fisica, University and Politecnico of Bari, CNR-IFN, Via Amendola 173, 70126, Bari, Italy.
  5. Vincenzo Spagnolo: State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China. ORCID
  6. Suotang Jia: State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China. ORCID
  7. Lei Dong: State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China. donglei@sxu.edu.cn. ORCID

Abstract

The extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves. Unlike conventional DCS, where the light wave is detected by a wavelength-dependent photoreceiver, QEMR-PAS employs a quartz tuning fork (QTF) as a high-Q sound transducer and works in conjunction with a phase-sensitive detector to extract the resonant sound component from the multiple heterodyne acoustic tones, resulting in a straightforward and low-cost hardware configuration. This novel QEMR-PAS technique enables wavelength-independent DCS detection for gas sensing, providing an unprecedented dynamic range of 63 dB, a remarkable spectral resolution of 43 MHz (or ~0.3 pm), and a prominent noise equivalent absorption of 5.99 × 10cm·Hz.

References

  1. Nat Commun. 2022 Apr 21;13(1):2181 [PMID: 35449158]
  2. Opt Express. 2015 Dec 28;23(26):33184-93 [PMID: 26831986]
  3. Phys Chem Chem Phys. 2018 Nov 14;20(44):27849-27855 [PMID: 30398249]
  4. Opt Lett. 2002 May 1;27(9):766-8 [PMID: 18007926]
  5. Opt Express. 2006 Nov 13;14(23):11222-33 [PMID: 19529536]
  6. Optica. 2016;3(4): [PMID: 34131580]
  7. Nat Commun. 2017 May 31;8:15331 [PMID: 28561065]
  8. Opt Express. 2018 Apr 16;26(8):9700-9713 [PMID: 29715918]
  9. Nat Commun. 2020 Aug 20;11(1):4164 [PMID: 32820155]
  10. Nature. 2013 Oct 17;502(7471):355-8 [PMID: 24132293]
  11. Photoacoustics. 2022 Sep 21;28:100403 [PMID: 36164583]
  12. Opt Express. 2021 Aug 2;29(16):25449-25461 [PMID: 34614876]
  13. Opt Express. 2012 Apr 9;20(8):9187-96 [PMID: 22513630]
  14. Nat Commun. 2020 Jun 19;11(1):3152 [PMID: 32561738]
  15. Nature. 2012 Feb 01;482(7383):68-71 [PMID: 22297971]
  16. Adv Sci (Weinh). 2022 Oct;9(28):e2200410 [PMID: 35711084]
  17. Opt Express. 2020 May 11;28(10):14740-14752 [PMID: 32403509]
  18. Opt Lett. 2002 Nov 1;27(21):1902-4 [PMID: 18033396]
  19. Appl Opt. 2018 Apr 1;57(10):C120-C127 [PMID: 29714232]
  20. Light Sci Appl. 2022 Sep 7;11(1):264 [PMID: 36071054]
  21. Light Sci Appl. 2017 Oct 20;6(10):e17076 [PMID: 30167208]

Grants

  1. 62235010/National Natural Science Foundation of China (National Science Foundation of China)
  2. 62175137/National Natural Science Foundation of China (National Science Foundation of China)
  3. 62122045/National Natural Science Foundation of China (National Science Foundation of China)
  4. 62075119/National Natural Science Foundation of China (National Science Foundation of China)
  5. 62235010/National Natural Science Foundation of China (National Science Foundation of China)
  6. 62175137/National Natural Science Foundation of China (National Science Foundation of China)
  7. 62122045/National Natural Science Foundation of China (National Science Foundation of China)
  8. 62075119/National Natural Science Foundation of China (National Science Foundation of China)
  9. 62235010/National Natural Science Foundation of China (National Science Foundation of China)
  10. 62175137/National Natural Science Foundation of China (National Science Foundation of China)
  11. 62122045/National Natural Science Foundation of China (National Science Foundation of China)
  12. 62075119/National Natural Science Foundation of China (National Science Foundation of China)
  13. 62235010/National Natural Science Foundation of China (National Science Foundation of China)
  14. 62175137/National Natural Science Foundation of China (National Science Foundation of China)
  15. 62122045/National Natural Science Foundation of China (National Science Foundation of China)
  16. 62075119/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0spectroscopyDCSresonantphotoacousticQEMR-PASfrequencysoundlightdynamicrangespectralresolutionapplicationssciencetechniquemultiheterodynegasheterodyneextensiondual-combwavelengthsalongabilityprovideultra-largeultra-highrendersextremelyusefuldiversearrayphysicschemistryatmosphericspacewellmedicalworkreportinnovativequartz-enhancedbeatresponsedualcombdown-convertedaudiodomainwaymoleculesactoptical-acousticconvertereffectgeneratingwavesUnlikeconventionalwavedetectedwavelength-dependentphotoreceiveremploysquartztuningforkQTFhigh-Qtransducerworksconjunctionphase-sensitivedetectorextractcomponentmultipleacoustictonesresultingstraightforwardlow-costhardwareconfigurationnovelenableswavelength-independentdetectionsensingprovidingunprecedented63 dBremarkable43 MHz~03 pmprominentnoiseequivalentabsorption599×10cm·HzQuartz-enhanced

Similar Articles

Cited By