Brain dynamics predictive of response to psilocybin for treatment-resistant depression.

Jakub Vohryzek, Joana Cabral, Louis-David Lord, Henrique M Fernandes, Leor Roseman, David J Nutt, Robin L Carhart-Harris, Gustavo Deco, Morten L Kringelbach
Author Information
  1. Jakub Vohryzek: Department of Psychiatry, University of Oxford, Oxford, UK.
  2. Joana Cabral: Department of Psychiatry, University of Oxford, Oxford, UK.
  3. Louis-David Lord: Department of Psychiatry, University of Oxford, Oxford, UK.
  4. Henrique M Fernandes: Department of Psychiatry, University of Oxford, Oxford, UK.
  5. Leor Roseman: Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK.
  6. David J Nutt: Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK.
  7. Robin L Carhart-Harris: Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK.
  8. Gustavo Deco: Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  9. Morten L Kringelbach: Department of Psychiatry, University of Oxford, Oxford, UK.

Abstract

Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2035-40 [PMID: 19188601]
  2. Neuron. 2014 Oct 22;84(2):262-74 [PMID: 25374354]
  3. Trends Cogn Sci. 2011 Oct;15(10):483-506 [PMID: 21908230]
  4. Hum Brain Mapp. 2016 Aug;37(8):2918-30 [PMID: 27120982]
  5. Neuroimage Clin. 2020;27:102316 [PMID: 32623137]
  6. Neuron. 2014 Dec 3;84(5):892-905 [PMID: 25475184]
  7. Nat Commun. 2015 Oct 01;6:8414 [PMID: 26423222]
  8. Nat Commun. 2022 Oct 3;13(1):5812 [PMID: 36192411]
  9. Sci Rep. 2017 Jun 8;7(1):3095 [PMID: 28596608]
  10. Neuroimage. 2019 Oct 1;199:127-142 [PMID: 31132450]
  11. Biochem Biophys Res Commun. 2022 Apr 2;598:20-25 [PMID: 35149433]
  12. J Neurosci. 2012 Mar 7;32(10):3366-75 [PMID: 22399758]
  13. Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12827-12832 [PMID: 29087305]
  14. Neuroscientist. 2022 Aug;28(4):382-399 [PMID: 33593120]
  15. Neuroimage. 2017 Mar 1;148:201-211 [PMID: 28093358]
  16. Trends Neurosci. 2020 Sep;43(9):667-680 [PMID: 32682563]
  17. Elife. 2014 Mar 25;3:e01867 [PMID: 24668169]
  18. Hum Brain Mapp. 2014 Nov;35(11):5442-56 [PMID: 24989126]
  19. Netw Neurosci. 2020 Feb 01;4(1):115-133 [PMID: 32043046]
  20. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  21. Prog Brain Res. 2018;242:1-23 [PMID: 30471677]
  22. Sci Rep. 2017 Dec 15;7(1):17661 [PMID: 29247209]
  23. Neuropsychopharmacology. 2020 Nov;45(12):2058-2069 [PMID: 32740651]
  24. Neuroimage. 2016 Feb 1;126:81-95 [PMID: 26631815]
  25. Cell Rep. 2020 Sep 8;32(10):108128 [PMID: 32905760]
  26. Neuroimage. 2017 Oct 15;160:41-54 [PMID: 28034766]
  27. Neuroimage. 2012 Sep;62(3):1342-53 [PMID: 22705375]
  28. Trends Neurosci. 2019 Apr;42(4):251-262 [PMID: 30808574]
  29. Nat Rev Neurosci. 2013 Aug;14(8):577-85 [PMID: 23756634]
  30. PLoS Biol. 2008 Jul 1;6(7):e159 [PMID: 18597554]
  31. eNeuro. 2021 Jul 6;8(4): [PMID: 34045210]
  32. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  33. Mol Psychiatry. 2020 Jan;25(1):82-93 [PMID: 30953003]
  34. Curr Biol. 2018 Oct 8;28(19):3065-3074.e6 [PMID: 30270185]
  35. J Neurosci. 2017 Jan 4;37(1):120-128 [PMID: 28053035]
  36. Nat Neurosci. 2010 Oct;13(10):1283-91 [PMID: 20818384]
  37. Front Syst Neurosci. 2020 Apr 17;14:20 [PMID: 32362815]
  38. Psychiatry Res Neuroimaging. 2021 Nov 30;317:111367 [PMID: 34555652]
  39. JAMA Psychiatry. 2015 Jun;72(6):603-11 [PMID: 25785575]
  40. Netw Neurosci. 2020 Nov 01;4(4):1122-1159 [PMID: 33195951]
  41. Lancet Psychiatry. 2016 Jul;3(7):619-27 [PMID: 27210031]
  42. Nat Med. 2022 Apr;28(4):844-851 [PMID: 35411074]
  43. Neuroimage. 2017 Oct 15;160:84-96 [PMID: 28343985]
  44. J Affect Disord. 2016 Jan 15;190:854-866 [PMID: 26048657]
  45. Neuroimage. 2017 May 15;152:538-550 [PMID: 28315461]
  46. Neuropsychopharmacology. 2016 Jun;41(7):1822-30 [PMID: 26632990]
  47. Neuroimage. 2017 Jul 15;155:490-502 [PMID: 28412440]
  48. Nat Rev Neurosci. 2007 Jul;8(7):559-67 [PMID: 17565358]
  49. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9566-9576 [PMID: 32284420]
  50. Proc Natl Acad Sci U S A. 2021 Nov 23;118(47): [PMID: 34789565]
  51. Trends Neurosci. 2016 Mar;39(3):125-135 [PMID: 26833259]
  52. Neuropsychopharmacology. 2017 Oct;42(11):2105-2113 [PMID: 28443617]
  53. Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20210247 [PMID: 35599554]
  54. Sci Rep. 2017 Oct 13;7(1):13187 [PMID: 29030624]
  55. Trends Cogn Sci. 2015 Oct;19(10):616-628 [PMID: 26412099]
  56. Neuroimage. 2017 Jul 15;155:549-564 [PMID: 28456584]
  57. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8463-8 [PMID: 26106164]
  58. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  59. Comput Struct Biotechnol J. 2022 Dec 01;21:335-345 [PMID: 36582443]
  60. Nat Commun. 2015 Jul 16;6:7751 [PMID: 26178017]
  61. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18088-18097 [PMID: 31427539]
  62. Front Mol Neurosci. 2021 Dec 24;14:790213 [PMID: 35002622]
  63. Sci Rep. 2017 Jul 11;7(1):5135 [PMID: 28698644]
  64. Brain Connect. 2012;2(2):91-101 [PMID: 22559794]
  65. Neuroimage. 2013 Oct 15;80:360-78 [PMID: 23707587]
  66. Curr Opin Psychiatry. 2019 Jan;32(1):16-21 [PMID: 30394903]
  67. Sci Rep. 2018 Feb 6;8(1):2507 [PMID: 29410486]
  68. Neuroimage. 2018 Apr 1;169:46-56 [PMID: 29225066]

Word Cloud

Created with Highcharts 10.0.0braindepressionpsilocybinregionsrespondersnon-respondersimplicateddynamicstreatmenttherapycausalhealthylarge-scalemodellingenabledusidentifydepressive5-hydroxytryptaminePsilocybinstartedshowpromiseyetunderlyingmechanismscurrentlyknownleverageddifferentialoutcome1025 mg7daysapartdepression-togainnewinsightsnetworksrestorationusedfitspatiotemporalrestDynamicsensitivityanalysissystematicperturbationmodelsspecifictransitionstateoneBinarizingsample>50%reductionsymptomsversussubsetchangeInterestinglycorrelatedensitymapsserotoninreceptors2a1apsilocinactivemetaboliteappreciableaffinityactsfull-to-partialagonistSerotonergictransmissionlongassociatedfindingsprovidemechanisticevidencerolerecoveryviaBrainpredictiveresponsetreatment-resistant

Similar Articles

Cited By