Mormyrid fish as models for investigating sensory-motor integration: A behavioural perspective.

S Skeels, G von der Emde, T Burt de Perera
Author Information
  1. S Skeels: Department of Biology University of Oxford Oxford UK. ORCID
  2. G von der Emde: Institute of Zoology University of Bonn Bonn Germany. ORCID
  3. T Burt de Perera: Department of Biology University of Oxford Oxford UK. ORCID

Abstract

Animals possess senses which gather information from their environment. They can tune into important aspects of this information and decide on the most appropriate response, requiring coordination of their sensory and motor systems. This interaction is bidirectional. Animals can actively shape their perception with self-driven motion, altering sensory flow to maximise the environmental information they are able to extract. Mormyrid fish are excellent candidates for studying sensory-motor interactions, because they possess a unique sensory system (the active electric sense) and exhibit notable behaviours that seem to be associated with electrosensing. This review will take a behavioural approach to unpicking this relationship, using active electrolocation as an example where body movements and sensing capabilities are highly related and can be assessed in tandem. Active electrolocation is the process where individuals will generate and detect low-voltage electric fields to locate and recognise nearby objects. We will focus on research in the mormyrid (), given the extensive study of this species, particularly its object recognition abilities. By studying object detection and recognition, we can assess the potential benefits of self-driven movements to enhance selection of biologically relevant information. Finally, these findings are highly relevant to understanding the involvement of movement in shaping the sensory experience of animals that use other sensory modalities. Understanding the overlap between sensory and motor systems will give insight into how different species have become adapted to their environments.

Keywords

References

  1. J Neurophysiol. 2020 Jul 1;124(1):40-48 [PMID: 32432502]
  2. J Vis Exp. 2014 Mar 06;(85): [PMID: 24637642]
  3. Science. 1944 Dec 29;100(2609):589-90 [PMID: 17776129]
  4. J Ultrastruct Res. 1970 Mar;30(5):473-90 [PMID: 5437490]
  5. Front Behav Neurosci. 2010 May 28;4:26 [PMID: 20577635]
  6. J Comput Neurosci. 1995 Jun;2(2):131-47 [PMID: 8521283]
  7. J Comp Neurol. 2008 Nov 20;511(3):342-59 [PMID: 18803238]
  8. J Neurosci. 2017 Jan 11;37(2):302-312 [PMID: 28077710]
  9. Nature. 1951 Feb 3;167(4240):201-2 [PMID: 14806425]
  10. J Exp Biol. 2013 Jul 1;216(Pt 13):2451-8 [PMID: 23761470]
  11. Behav Processes. 2003 Aug 29;64(1):1-12 [PMID: 12914988]
  12. Trends Neurosci. 2007 Jan;30(1):14-21 [PMID: 17137642]
  13. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jun;192(6):601-12 [PMID: 16645886]
  14. J Neurosci. 2018 Jun 13;38(24):5456-5465 [PMID: 29735558]
  15. Annu Rev Physiol. 1970;32:471-528 [PMID: 4906125]
  16. Science. 2011 Apr 29;332(6029):583-6 [PMID: 21527711]
  17. J Exp Biol. 2008 Mar;211(Pt 6):921-34 [PMID: 18310118]
  18. J Morphol. 2012 Jun;273(6):629-38 [PMID: 22234965]
  19. J Exp Biol. 2012 May 1;215(Pt 9):1567-74 [PMID: 22496294]
  20. J Exp Biol. 1998 Jul;201(Pt 14):2115-28 [PMID: 9639586]
  21. J Neurosci. 2020 Aug 12;40(33):6345-6356 [PMID: 32661026]
  22. J Physiol Paris. 2004 Jan-Jun;98(1-3):67-80 [PMID: 15477023]
  23. Curr Opin Neurobiol. 2005 Aug;15(4):437-43 [PMID: 16009545]
  24. PLoS Biol. 2007 Nov;5(11):e301 [PMID: 18001151]
  25. J Physiol Paris. 2002 Sep-Dec;96(5-6):431-44 [PMID: 14692491]
  26. J Exp Biol. 2001 Feb;204(Pt 3):543-57 [PMID: 11171305]
  27. J Neurosci. 1989 Mar;9(3):1029-44 [PMID: 2926477]
  28. Front Integr Neurosci. 2020 Jul 29;14:42 [PMID: 32848649]
  29. Behav Brain Res. 1984 Jun;12(3):291-306 [PMID: 6540586]
  30. J Exp Biol. 2007 Sep;210(Pt 17):3082-95 [PMID: 17704083]
  31. J Comp Neurol. 2016 Aug 15;524(12):2479-91 [PMID: 26780193]
  32. J Physiol Paris. 2016 Oct;110(3 Pt B):151-163 [PMID: 27979703]
  33. J Physiol Paris. 2008 Jul-Nov;102(4-6):279-90 [PMID: 18992334]
  34. J Neurosci. 2014 Nov 26;34(48):16103-16 [PMID: 25429151]
  35. Proc Biol Sci. 2022 Oct 12;289(1984):20221220 [PMID: 36476009]
  36. Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):573-577 [PMID: 29295924]
  37. Front Neural Circuits. 2014 Oct 28;8:127 [PMID: 25389392]
  38. Curr Biol. 2017 May 8;27(9):1356-1361 [PMID: 28457872]
  39. J Exp Biol. 2012 Dec 15;215(Pt 24):4358-73 [PMID: 23175527]
  40. Elife. 2022 Sep 20;11: [PMID: 36125119]
  41. Front Behav Neurosci. 2021 Oct 11;15:718491 [PMID: 34707485]
  42. J Exp Biol. 1998 Apr;201 (Pt 7):969-80 [PMID: 9487102]
  43. Biol Cybern. 2008 Jun;98(6):519-39 [PMID: 18491164]
  44. Science. 1981 Oct 23;214(4519):450-53 [PMID: 7291985]
  45. Experientia. 1991 Jan 15;47(1):31-8 [PMID: 1999240]
  46. J Physiol Paris. 2013 Jan-Apr;107(1-2):95-106 [PMID: 22781955]
  47. J Exp Biol. 1989 Sep;146:229-53 [PMID: 2689564]
  48. Science. 2000 Feb 4;287(5454):851-3 [PMID: 10657298]
  49. J Neurophysiol. 1996 Sep;76(3):1581-96 [PMID: 8890278]
  50. J Comp Neurol. 1983 May 20;216(3):327-38 [PMID: 6306068]
  51. J Comp Neurol. 1989 Aug 15;286(3):391-407 [PMID: 2768566]
  52. Nature. 1998 Oct 29;395(6705):890-4 [PMID: 9804420]
  53. J Comp Physiol A. 1999 Oct;185(4):341-52 [PMID: 10555268]
  54. Philos Trans R Soc Lond B Biol Sci. 2000 Sep 29;355(1401):1143-6 [PMID: 11079386]
  55. Brain Res. 1978 Apr 21;145(1):85-96 [PMID: 638785]
  56. J Neurosci Methods. 2017 Feb 15;278:76-86 [PMID: 28069391]
  57. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7638-43 [PMID: 27313211]
  58. PLoS One. 2017 Sep 13;12(9):e0184622 [PMID: 28902915]
  59. PLoS One. 2012;7(5):e36287 [PMID: 22606250]
  60. Proc Biol Sci. 2009 Mar 7;276(1658):853-60 [PMID: 19129126]
  61. Biol Cybern. 2019 Jun;113(3):239-255 [PMID: 30627851]
  62. J Exp Biol. 2013 Jul 1;216(Pt 13):2487-500 [PMID: 23761474]
  63. Curr Biol. 2018 Nov 19;28(22):3648-3653.e2 [PMID: 30416061]
  64. Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12270-12274 [PMID: 31160453]
  65. Commun Biol. 2022 Oct 1;5(1):1045 [PMID: 36182985]
  66. J Exp Biol. 2019 Mar 21;222(Pt 6): [PMID: 30728158]
  67. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jun;192(6):587-600 [PMID: 16501980]
  68. Front Behav Neurosci. 2014 May 28;8:186 [PMID: 24904337]
  69. Curr Opin Neurobiol. 2021 Dec;71:1-10 [PMID: 34392168]
  70. J Fish Biol. 2012 Dec;81(7):2235-54 [PMID: 23252737]
  71. Sci Rep. 2017 Mar 03;7:43665 [PMID: 28257127]
  72. J Neurosci. 1997 Aug 15;17(16):6409-23 [PMID: 9236249]
  73. J Neurosci. 2020 Jan 29;40(5):1097-1109 [PMID: 31818975]
  74. Brain Res. 1983 Aug;287(1):25-46 [PMID: 6616267]
  75. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jun;192(6):573-86 [PMID: 16645885]

Word Cloud

Created with Highcharts 10.0.0sensoryinformationcanwillfishactiveelectricelectrolocationobjectrecognitionAnimalspossessmotorsystemsself-drivenMormyridstudyingsensory-motorbehaviouralmovementshighlyspeciesrelevantsensesgatherenvironmenttuneimportantaspectsdecideappropriateresponserequiringcoordinationinteractionbidirectionalactivelyshapeperceptionmotionalteringflowmaximiseenvironmentalableextractexcellentcandidatesinteractionsuniquesystemsenseexhibitnotablebehavioursseemassociatedelectrosensingreviewtakeapproachunpickingrelationshipusingexamplebodysensingcapabilitiesrelatedassessedtandemActiveprocessindividualsgeneratedetectlow-voltagefieldslocaterecognisenearbyobjectsfocusresearchmormyridgivenextensivestudyparticularlyabilitiesdetectionassesspotentialbenefitsenhanceselectionbiologicallyFinallyfindingsunderstandinginvolvementmovementshapingexperienceanimalsusemodalitiesUnderstandingoverlapgiveinsightdifferentbecomeadaptedenvironmentsmodelsinvestigatingintegration:perspectiveGnathonemuspetersiibehaviourmormyridssensory‐motorintegrationweakly

Similar Articles

Cited By