The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of against chemical stress.

Carine Sao Emani, Norbert Reiling
Author Information
  1. Carine Sao Emani: Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
  2. Norbert Reiling: Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.

Abstract

Background: It was previously shown that GlnA3 enabled to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol.
Rationale: Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191.
Approach: To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆ and ∆ M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆ M.tb mutant.
Results: The ∆ mutant was sensitive to Spm stress, while the ∆ mutant was not. On the other hand, the ∆ mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆ mutant was the only mutant that was sensitive to oxidative stress.
Conclusion: The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆ mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.7001352.v1

References

  1. Antimicrob Agents Chemother. 1974 Dec;6(6):722-8 [PMID: 4451345]
  2. Front Microbiol. 2017 Apr 25;8:726 [PMID: 28487688]
  3. Front Microbiol. 2011 May 13;2:105 [PMID: 21734908]
  4. Antimicrob Agents Chemother. 1991 Jun;35(6):1035-9 [PMID: 1656850]
  5. Mol Microbiol. 2005 Nov;58(4):1157-72 [PMID: 16262797]
  6. Arch Biochem Biophys. 1986 Nov 15;251(1):348-60 [PMID: 3789739]
  7. Chem Biol. 2007 May;14(5):543-51 [PMID: 17524985]
  8. Front Immunol. 2014 Sep 02;5:420 [PMID: 25228902]
  9. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1599-1604 [PMID: 29382761]
  10. Infect Immun. 2002 Jul;70(7):3371-81 [PMID: 12065475]
  11. Microbiol Spectr. 2024 Jan 11;12(1):e0314823 [PMID: 38096459]
  12. PLoS One. 2013 Jul 29;8(7):e69790 [PMID: 23922800]
  13. J Mol Biol. 2006 Sep 1;361(5):850-63 [PMID: 16884737]
  14. Front Immunol. 2021 Jul 12;12:696491 [PMID: 34322125]
  15. mBio. 2020 May 5;11(3): [PMID: 32371597]
  16. J Bacteriol. 2000 Oct;182(19):5373-80 [PMID: 10986239]
  17. Acta Crystallogr D Struct Biol. 2019 Jun 1;75(Pt 6):545-553 [PMID: 31205017]
  18. J Exp Med. 1952 Feb;95(2):191-208 [PMID: 14907970]
  19. FASEB J. 1996 Mar;10(4):461-70 [PMID: 8647345]
  20. FEMS Microbiol Lett. 2006 Nov;264(1):74-9 [PMID: 17020551]
  21. Antimicrob Agents Chemother. 2012 May;56(5):2643-51 [PMID: 22314527]
  22. J Bacteriol. 2014 Oct;196(19):3410-20 [PMID: 25022854]
  23. mBio. 2017 Aug 15;8(4): [PMID: 28811344]
  24. J Exp Med. 2019 Mar 4;216(3):501-516 [PMID: 30792185]
  25. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111-5 [PMID: 1901654]
  26. Nat Genet. 2016 May;48(5):544-51 [PMID: 27064254]
  27. Exp Physiol. 1999 Mar;84(2):231-52 [PMID: 10226168]
  28. Sci Rep. 2021 Jan 29;11(1):2628 [PMID: 33514768]
  29. J Biol Chem. 2004 Sep 17;279(38):40174-84 [PMID: 15247240]
  30. J Ultrastruct Res. 1968 Oct;25(1):46-63 [PMID: 4974315]
  31. Immunity. 2015 Mar 17;42(3):419-30 [PMID: 25786174]
  32. J Bacteriol. 2006 Jan;188(2):424-30 [PMID: 16385031]
  33. Mol Microbiol. 2002 Feb;43(3):717-31 [PMID: 11929527]
  34. Curr Issues Mol Biol. 2004 Jul;6(2):145-57 [PMID: 15119825]
  35. Cell Metab. 2019 Aug 6;30(2):352-363.e8 [PMID: 31130465]
  36. Cell Rep. 2016 Jan 26;14(3):572-585 [PMID: 26774486]
  37. Int J Mol Sci. 2021 Feb 20;22(4): [PMID: 33672733]
  38. J Biomed Sci. 2018 Jul 12;25(1):55 [PMID: 30001196]
  39. Front Microbiol. 2020 Dec 09;11:591866 [PMID: 33362741]
  40. Mol Microbiol. 2001 Nov;42(3):851-65 [PMID: 11722747]
  41. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12989-94 [PMID: 14569030]
  42. Virulence. 2020 Dec;11(1):898-915 [PMID: 32713249]
  43. FEMS Microbiol Lett. 2004 Nov 15;240(2):187-92 [PMID: 15522506]
  44. Antimicrob Agents Chemother. 2009 Sep;53(9):3675-82 [PMID: 19564371]
  45. Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9779-9784 [PMID: 30143580]
  46. Nat Commun. 2013;4:1881 [PMID: 23695675]
  47. Microbes Infect. 2006 Jul;8(8):2061-7 [PMID: 16798044]
  48. PLoS One. 2010 Jul 16;5(7):e11622 [PMID: 20661284]
  49. PLoS One. 2010 Oct 26;5(10):e13356 [PMID: 21048946]
  50. PLoS Pathog. 2021 May 14;17(5):e1009570 [PMID: 33989345]
  51. Microbiology (Reading). 2021 Apr;167(4): [PMID: 33826491]
  52. Front Cell Infect Microbiol. 2022 Sep 27;12:968543 [PMID: 36237431]
  53. PLoS One. 2010 Mar 23;5(3):e9823 [PMID: 20352111]
  54. Tuberculosis (Edinb). 2019 May;116:44-55 [PMID: 31153518]
  55. Expert Rev Anti Infect Ther. 2012 Sep;10(9):1049-53 [PMID: 23106279]
  56. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  57. Nat Rev Immunol. 2008 Dec;8(12):958-69 [PMID: 19029990]
  58. Antimicrob Agents Chemother. 2018 Mar 27;62(4): [PMID: 29437626]
  59. PLoS Pathog. 2017 Nov 27;13(11):e1006752 [PMID: 29176894]
  60. J Bacteriol. 2012 Mar;194(5):1045-54 [PMID: 22210765]
  61. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15594-8 [PMID: 17028173]
  62. Front Mol Biosci. 2021 May 03;8:599221 [PMID: 34012976]
  63. Biochem Biophys Res Commun. 1975 Jan 20;62(2):246-52 [PMID: 803372]
  64. J Bacteriol. 2005 Apr;187(7):2267-77 [PMID: 15774869]
  65. J Bacteriol. 1998 Nov;180(22):6068-71 [PMID: 9811672]
  66. Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7025-7030 [PMID: 28634299]
  67. Infect Immun. 1999 Jan;67(1):460-5 [PMID: 9864257]
  68. Acta Crystallogr D Struct Biol. 2022 Jul 1;78(Pt 7):835-845 [PMID: 35775983]
  69. Biochem J. 1971 Aug;123(5):773-87 [PMID: 5124385]
  70. Cell Host Microbe. 2015 Jun 10;17(6):829-37 [PMID: 26067605]
  71. Sci Rep. 2015 Nov 25;5:16918 [PMID: 26603639]
  72. Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8327-32 [PMID: 15928073]
  73. PLoS One. 2015 Jun 19;10(6):e0129744 [PMID: 26091535]
  74. FEMS Microbiol Lett. 2019 May 1;366(10): [PMID: 31125044]
  75. Arch Biochem Biophys. 2019 May 30;667:59-66 [PMID: 31054279]
  76. J Antimicrob Chemother. 2006 Feb;57(2):252-9 [PMID: 16373429]
  77. CRC Crit Rev Biochem. 1983;14(1):1-46 [PMID: 6340955]
  78. Infect Immun. 2019 Jan 24;87(2): [PMID: 30455201]
  79. Curr Microbiol. 2022 Sep 20;79(11):324 [PMID: 36125560]
  80. Methods Mol Biol. 2015;1285:117-30 [PMID: 25779313]
  81. Tuberculosis (Edinb). 2004;84(3-4):218-27 [PMID: 15207491]
  82. J Leukoc Biol. 2002 Jul;72(1):101-6 [PMID: 12101268]
  83. Infect Immun. 2006 Nov;74(11):6491-5 [PMID: 17057098]
  84. Comp Funct Genomics. 2004;5(1):17-38 [PMID: 18629044]
  85. Antimicrob Agents Chemother. 2011 Jul;55(7):3133-9 [PMID: 21502624]
  86. J Immunol. 2010 Jul 1;185(1):605-14 [PMID: 20498354]
  87. J Bacteriol. 2009 Jun;191(12):3965-80 [PMID: 19376862]
  88. Microbiology (Reading). 1999 Dec;145 ( Pt 12):3497-3503 [PMID: 10627047]
  89. J Proteome Res. 2010 Nov 5;9(11):5816-26 [PMID: 20825248]
  90. Arch Biochem Biophys. 1986 Nov 15;251(1):336-47 [PMID: 3789738]
  91. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21761-6 [PMID: 21118978]
  92. Front Vet Sci. 2023 Sep 22;10:1264200 [PMID: 37808110]
  93. Curr Microbiol. 2018 Apr;75(4):401-409 [PMID: 29134265]
  94. Immunol Rev. 2015 Mar;264(1):182-203 [PMID: 25703560]
  95. J Bacteriol. 2007 Feb;189(3):730-40 [PMID: 17098899]
  96. Protein Sci. 2021 Jun;30(6):1264-1269 [PMID: 33826189]
  97. Nucleic Acids Res. 2004 Jan 12;32(1):e11 [PMID: 14718555]
  98. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  99. mBio. 2023 Aug 31;14(4):e0036323 [PMID: 37350636]
  100. Bioessays. 2015 Dec;37(12):1262-7 [PMID: 26515639]
  101. Infect Immun. 2003 Sep;71(9):5332-43 [PMID: 12933881]
  102. Biofactors. 2006;27(1-4):109-20 [PMID: 17012768]
  103. Infect Dis (Lond). 2015 Mar;47(3):168-77 [PMID: 25622945]
  104. J Bacteriol. 2003 Nov;185(22):6736-40 [PMID: 14594852]
  105. Antimicrob Agents Chemother. 2015 Aug;59(8):5057-60 [PMID: 26033733]
  106. J Biol Chem. 2013 Jun 21;288(25):18473-83 [PMID: 23625916]
  107. Med Sci (Basel). 2021 Jun 09;9(2): [PMID: 34207607]
  108. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7534-9 [PMID: 11416222]
  109. BMC Genomics. 2016 Oct 10;17(1):791 [PMID: 27724857]
  110. Biochim Biophys Acta Biomembr. 2020 Dec 1;1862(12):183208 [PMID: 32004521]
  111. mSystems. 2020 Aug 11;5(4): [PMID: 32788404]
  112. Microbes Infect. 2024 Jan-Feb;26(1-2):105239 [PMID: 37863312]
  113. J Biol Chem. 1958 Apr;231(2):647-55 [PMID: 13539000]
  114. Biomolecules. 2021 Sep 03;11(9): [PMID: 34572519]
  115. Mol Microbiol. 2011 Jan;79(1):133-48 [PMID: 21166899]
  116. Nat Chem Biol. 2008 Oct;4(10):609-16 [PMID: 18724363]
  117. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):362-6 [PMID: 8552639]
  118. PLoS Pathog. 2014 Feb 20;10(2):e1003928 [PMID: 24586151]
  119. Mol Microbiol. 2007 Aug;65(3):684-99 [PMID: 17635188]
  120. Amino Acids. 2014 Mar;46(3):655-60 [PMID: 23851697]
  121. Biochemistry. 2000 Aug 15;39(32):9975-83 [PMID: 10933818]
  122. Microbiology (Reading). 2000 Aug;146 ( Pt 8):1969-1975 [PMID: 10931901]
  123. Biochem Biophys Res Commun. 2022 Oct 8;624:120-126 [PMID: 35940124]
  124. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  125. mBio. 2019 Mar 26;10(2): [PMID: 30914513]
  126. PLoS One. 2011;6(6):e21738 [PMID: 21738782]
  127. Microbiol Spectr. 2014;2(4): [PMID: 25485178]
  128. J Exp Med. 2003 Sep 1;198(5):693-704 [PMID: 12953091]
  129. J Bacteriol. 2012 Feb;194(3):567-75 [PMID: 22101841]
  130. Appl Microbiol Biotechnol. 2018 Nov;102(21):9231-9242 [PMID: 30136203]
  131. J Immunol. 2020 Dec 1;205(11):3095-3106 [PMID: 33148716]
  132. PLoS One. 2016 Jan 29;11(1):e0147706 [PMID: 26824899]
  133. Front Microbiol. 2012 Jan 10;2:266 [PMID: 22291682]
  134. Microbiol Spectr. 2022 Apr 27;10(2):e0044321 [PMID: 35266819]
  135. Mol Microbiol. 2020 Jan;113(1):4-21 [PMID: 31661176]
  136. J Biomol Struct Dyn. 2014;32(10):1546-51 [PMID: 23964652]
  137. Antimicrob Agents Chemother. 2013 Jul;57(7):3202-7 [PMID: 23629716]
  138. Nat Commun. 2020 Apr 23;11(1):1960 [PMID: 32327655]
  139. Tuberculosis (Edinb). 2003;83(1-3):91-7 [PMID: 12758196]
  140. Novartis Found Symp. 1998;217:120-31; discussion 132-7 [PMID: 9949805]
  141. PLoS One. 2010 May 24;5(5):e10777 [PMID: 20520722]
  142. Tuberculosis (Edinb). 2007 Jul;87(4):347-59 [PMID: 17433778]
  143. Sci Data. 2018 Sep 25;5:180184 [PMID: 30251996]
  144. Sci Rep. 2016 Jan 25;6:19695 [PMID: 26806099]
  145. Tuberculosis (Edinb). 2004;84(3-4):138-43 [PMID: 15207483]
  146. Front Microbiol. 2018 Aug 03;9:1803 [PMID: 30123211]
  147. Antimicrob Agents Chemother. 1972 Jul;2(1):29-35 [PMID: 4208567]
  148. Tuberculosis (Edinb). 2016 Mar;97:154-62 [PMID: 26615221]
  149. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):E348-57 [PMID: 26729876]
  150. Biochim Biophys Acta. 2008 Nov;1780(11):1201-16 [PMID: 18252205]
  151. Microbiology (Reading). 2009 Apr;155(Pt 4):1093-1102 [PMID: 19332811]
  152. Microbiology (Reading). 2004 Nov;150(Pt 11):3821-3829 [PMID: 15528667]
  153. Biochim Biophys Acta. 1992 Sep 15;1117(2):179-87 [PMID: 1525178]
  154. J Gen Microbiol. 1960 Aug;23:137-41 [PMID: 14445360]
  155. Microbiol Res. 2013 Aug 25;168(7):407-14 [PMID: 23562345]
  156. Mol Pharm. 2013 Apr 1;10(4):1450-8 [PMID: 23458604]
  157. J Exp Med. 2003 Sep 1;198(5):705-13 [PMID: 12953092]
  158. Biochem Biophys Res Commun. 2018 Jan 1;495(1):174-178 [PMID: 29101028]
  159. Front Cell Infect Microbiol. 2017 Jun 08;7:240 [PMID: 28642844]
  160. J Bacteriol. 2006 Jan;188(1):150-9 [PMID: 16352831]
  161. Mol Med. 2002 Nov;8(11):714-24 [PMID: 12520088]
  162. PLoS One. 2017 Jan 6;12(1):e0169545 [PMID: 28060867]
  163. Microbiol Spectr. 2019 Mar;7(2): [PMID: 30848232]
  164. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Aug 1;62(Pt 8):794-7 [PMID: 16880560]
  165. Antimicrob Agents Chemother. 2013 Feb;57(2):751-7 [PMID: 23165464]
  166. Amino Acids. 2020 Feb;52(2):151-160 [PMID: 31016375]
  167. J Biol Chem. 1958 Apr;231(2):637-46 [PMID: 13538999]
  168. J Biol Chem. 1980 May 10;255(9):3977-86 [PMID: 7372662]
  169. Eur Respir J. 2010 Jul;36(1):135-42 [PMID: 19926735]
  170. J Infect Dis. 2010 Jun 1;201(11):1743-52 [PMID: 20394526]
  171. Acta Crystallogr D Biol Crystallogr. 2015 Nov;71(Pt 11):2297-308 [PMID: 26527146]
  172. Infect Immun. 2012 Oct;80(10):3650-9 [PMID: 22802345]
  173. Biotechnol Appl Biochem. 2013 Jul-Aug;60(4):412-6 [PMID: 24033595]
  174. Front Immunol. 2020 Aug 20;11:1902 [PMID: 32973788]
  175. Nutrients. 2023 Apr 12;15(8): [PMID: 37111071]
  176. Tuber Lung Dis. 1997;78(5-6):237-46 [PMID: 10209678]
  177. Chem Biol Drug Des. 2014 Dec;84(6):626-41 [PMID: 25041568]
  178. IUBMB Life. 2009 Sep;61(9):880-94 [PMID: 19603518]
  179. J Biol Chem. 2018 Nov 30;293(48):18736-18745 [PMID: 30333229]
  180. Int Immunopharmacol. 2022 Nov;112:109238 [PMID: 36116151]
  181. Biochem Biophys Res Commun. 1999 Mar 24;256(3):485-7 [PMID: 10080924]
  182. Microbiol Spectr. 2024 Jan 11;12(1):e0356823 [PMID: 38095461]
  183. Front Cell Infect Microbiol. 2022 May 11;12:876667 [PMID: 35646739]
  184. Elife. 2022 Apr 13;11: [PMID: 35416771]
  185. J Mol Biol. 2006 Oct 6;362(5):877-86 [PMID: 16950391]
  186. J Pharmacol Exp Ther. 1956 Feb;116(2):139-55 [PMID: 13296029]
  187. Magn Reson Chem. 2010 Feb;48(2):123-8 [PMID: 19960498]
  188. Microbiology (Reading). 1995 Sep;141 ( Pt 9):2223-33 [PMID: 7496535]
  189. Microbiology (Reading). 2010 Jan;156(Pt 1):81-87 [PMID: 19797356]
  190. Cell Microbiol. 2003 Sep;5(9):637-48 [PMID: 12925133]
  191. J Leukoc Biol. 2003 Feb;73(2):209-12 [PMID: 12554797]

Word Cloud

Created with Highcharts 10.0.0stressSpmmutantRv1878effluxRv1877Rv0191MtbpumpdetoxificationplayshownhandphysiologicalrolerolessensitiveironcellwallpreviouslyessentialsperminespecificinvestigationalongpumpsmayoxidativeMFS-typeseemshomeostasisBackground:GlnA3enabledsurviveexcesspolyaminesHoweversubsequentstudiesrevealedcorrespondingorthologmulti-drugenableexportwiderangecompoundschloramphenicolRationale:ThereforefirstwanteddeterminecanachieveddependentuponfunctionNextsincefoundsoughtfollow-upApproach:evaluatespecificitymycobacterialtolerancegeneratedunmarkedmutantsevaluatedsusceptibilityfollowcharacterizedResults:grewbetterwild-typestarvationyetproteinsseemedhypoxiaacidicLastlyConclusion:multidrugrequiredopposedMoreoverregulationreconstitutionsensitivitysuggestsresponsibletransportlowmolecularweightthiolsdifferentialprotectionchemicalMycobacteriumtuberculosis

Similar Articles

Cited By (1)