Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review.

Aarti Tundwal, Harish Kumar, Bibin J Binoj, Rahul Sharma, Gaman Kumar, Rajni Kumari, Ankit Dhayal, Abhiruchi Yadav, Devender Singh, Parvin Kumar
Author Information
  1. Aarti Tundwal: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in.
  2. Harish Kumar: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in. ORCID
  3. Bibin J Binoj: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in.
  4. Rahul Sharma: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in. ORCID
  5. Gaman Kumar: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in.
  6. Rajni Kumari: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in.
  7. Ankit Dhayal: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in.
  8. Abhiruchi Yadav: Dept of Chemistry, Central University of Haryana Mahendergarh-123031 India harishkumar@cuh.ac.in.
  9. Devender Singh: Dept of Chemistry, MDU Rohtak-124001 India. ORCID
  10. Parvin Kumar: Dept of Chemistry, Kurukshetra University Kurukshetra India.

Abstract

Supercapacitors are the latest development in the field of energy storage devices (ESDs). A lot of research has been done in the last few decades to increase the performance of supercapacitors. The electrodes of supercapacitors are modified by composite materials based on conducting polymers, metal oxide nanoparticles, metal-organic frameworks, covalent organic frameworks, MXenes, chalcogenides, carbon nanotubes (CNTs), In comparison to rechargeable batteries, supercapacitors have advantages such as quick charging and high power density. This review is focused on the progress in the development of electrode materials for supercapacitors using composite materials based on conducting polymers, graphene, metal oxide nanoparticles/nanofibres, and CNTs. Moreover, we investigated different types of ESDs as well as their electrochemical energy storage mechanisms and kinetic aspects. We have also discussed the classification of different types of SCs; advantages and drawbacks of SCs and other ESDs; and the use of nanofibres, carbon, CNTs, graphene, metal oxide-nanofibres, and conducting polymers as electrode materials for SCs. Furthermore, modifications in the development of different types of SCs such as pseudo-capacitors, hybrid capacitors, and electrical double-layer capacitors are discussed in detail; both electrolyte-based and electrolyte-free supercapacitors are taken into consideration. This review will help in designing and fabricating high-performance supercapacitors with high energy density and power output, which will act as an alternative to Li-ion batteries in the future.

References

  1. Materials (Basel). 2020 Jan 23;13(3): [PMID: 31979286]
  2. RSC Adv. 2021 Jan 15;11(6):3445-3451 [PMID: 35424276]
  3. Nanomaterials (Basel). 2022 Apr 29;12(9): [PMID: 35564227]
  4. Nanoscale. 2015 May 14;7(18):8485-94 [PMID: 25894255]
  5. Molecules. 2022 Jan 15;27(2): [PMID: 35056862]
  6. Nano Lett. 2010 Oct 13;10(10):4025-31 [PMID: 20831255]
  7. Nanomaterials (Basel). 2022 Jul 23;12(15): [PMID: 35893498]
  8. J Colloid Interface Sci. 2018 Mar 1;513:448-454 [PMID: 29175738]
  9. J Hazard Mater. 2022 Oct 15;440:129705 [PMID: 35963090]
  10. Adv Mater. 2021 Jul;33(29):e2003666 [PMID: 34096100]
  11. Nanotechnology. 2016 Jan 29;27(4):042001 [PMID: 26656436]
  12. ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20566-20576 [PMID: 28557417]
  13. Small. 2015 Feb 11;11(6):749-55 [PMID: 25273957]
  14. Nat Commun. 2020 Aug 11;11(1):3882 [PMID: 32782258]
  15. Nat Commun. 2022 Nov 12;13(1):6884 [PMID: 36371429]
  16. Chem Commun (Camb). 2013 Mar 21;49(23):2308-10 [PMID: 23396315]
  17. Molecules. 2020 Sep 05;25(18): [PMID: 32899569]
  18. Chem Soc Rev. 2011 Mar;40(3):1697-721 [PMID: 21173973]
  19. J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1871-1880 [PMID: 37517187]
  20. Chem Commun (Camb). 2015 May 4;51(36):7669-72 [PMID: 25845337]
  21. Nat Nanotechnol. 2015 Apr;10(4):313-8 [PMID: 25799518]
  22. ACS Appl Mater Interfaces. 2015 May 6;7(17):9228-34 [PMID: 25856260]
  23. Nano Lett. 2011 Oct 12;11(10):4438-42 [PMID: 21942427]
  24. J Colloid Interface Sci. 2018 Dec 15;532:395-406 [PMID: 30099303]
  25. Nat Mater. 2008 Nov;7(11):845-54 [PMID: 18956000]
  26. Front Chem. 2023 Aug 22;11:1166544 [PMID: 37674526]
  27. ChemSusChem. 2022 Aug 5;15(15):e202200817 [PMID: 35642616]
  28. Nano Lett. 2006 Dec;6(12):2690-5 [PMID: 17163689]
  29. Anal Chim Acta. 2020 Oct 2;1132:110-120 [PMID: 32980101]
  30. ACS Nano. 2010 Aug 24;4(8):4806-14 [PMID: 20731455]
  31. Nanotechnology. 2015 Oct 23;26(42):425402 [PMID: 26422819]
  32. Acc Chem Res. 2009 Jan 20;42(1):135-45 [PMID: 18986177]
  33. Chem Rev. 2001 Jul;101(7):1897-930 [PMID: 11710235]
  34. Materials (Basel). 2021 Nov 24;14(23): [PMID: 34885303]
  35. Small. 2018 Apr;14(15):e1704203 [PMID: 29527803]
  36. Chem Soc Rev. 2021 Nov 15;50(22):12702-12743 [PMID: 34643198]
  37. Renew Sustain Energy Rev. 2022 Apr;158:112135 [PMID: 35039746]
  38. Chem Rev. 2022 Jan 12;122(1):903-956 [PMID: 34705441]
  39. Nanomicro Lett. 2020 May 30;12(1):118 [PMID: 34138149]
  40. ACS Appl Mater Interfaces. 2016 Oct 5;8(39):26019-26029 [PMID: 27626129]
  41. Science. 2011 Jun 24;332(6037):1537-41 [PMID: 21566159]
  42. Chem Commun (Camb). 2016 Feb 14;52(13):2721-4 [PMID: 26758814]
  43. ACS Nano. 2011 Jan 25;5(1):436-42 [PMID: 21142183]
  44. Nanomaterials (Basel). 2015 Jun 02;5(2):906-936 [PMID: 28347044]
  45. ACS Appl Mater Interfaces. 2015 Jul 22;7(28):15303-13 [PMID: 26121375]
  46. Polymers (Basel). 2020 Aug 16;12(8): [PMID: 32824366]
  47. R Soc Open Sci. 2021 Oct 20;8(10):210567 [PMID: 34703617]
  48. Nanotechnology. 2017 Nov 3;28(44):445401 [PMID: 28854156]
  49. ACS Omega. 2022 Jun 10;7(25):21820-21844 [PMID: 35785272]
  50. Nat Commun. 2023 Mar 16;14(1):1472 [PMID: 36928582]
  51. Polymers (Basel). 2021 Jul 25;13(15): [PMID: 34372048]
  52. Molecules. 2020 Jan 09;25(2): [PMID: 31936531]
  53. Chem Rec. 2022 Oct;22(10):e202200118 [PMID: 35686874]
  54. ACS Nano. 2009 Nov 24;3(11):3730-6 [PMID: 19824654]
  55. Chem Soc Rev. 2009 Jan;38(1):226-52 [PMID: 19088976]
  56. Nat Commun. 2023 Jan 23;14(1):374 [PMID: 36690615]
  57. J Electroanal Chem Interfacial Electrochem. 1987 Dec 1;18(1-3):29-36 [PMID: 25484449]
  58. ACS Nano. 2010 Sep 28;4(9):5019-26 [PMID: 20795728]
  59. ACS Nano. 2013 Aug 27;7(8):6899-905 [PMID: 23829569]
  60. Chem Rev. 2020 Jul 22;120(14):6738-6782 [PMID: 32597172]
  61. Nat Commun. 2023 Jan 4;14(1):64 [PMID: 36599865]
  62. ACS Nano. 2014 Jun 24;8(6):5413-22 [PMID: 24840296]
  63. Sci Rep. 2021 Jan 12;11(1):649 [PMID: 33436987]
  64. Adv Mater. 2011 Sep 1;23(33):3751-69 [PMID: 21739488]
  65. Nano Lett. 2013 May 8;13(5):2078-85 [PMID: 23570565]
  66. Adv Mater. 2023 May;35(21):e2300940 [PMID: 36921960]
  67. J Mater Chem B. 2021 Mar 4;9(8):1941-1964 [PMID: 33532811]
  68. Nat Mater. 2005 May;4(5):366-77 [PMID: 15867920]

Word Cloud

Created with Highcharts 10.0.0supercapacitorsmaterialsconductingmetalSCsdevelopmentenergyESDscompositepolymerscarbonCNTsreviewelectrodedifferenttypesstoragebasedoxideframeworksbatteriesadvantageshighpowerdensitygraphenediscussedcapacitorswillSupercapacitorslatestfielddeviceslotresearchdonelastdecadesincreaseperformanceelectrodesmodifiednanoparticlesmetal-organiccovalentorganicMXeneschalcogenidesnanotubescomparisonrechargeablequickchargingfocusedprogressusingnanoparticles/nanofibresMoreoverinvestigatedwellelectrochemicalmechanismskineticaspectsalsoclassificationdrawbacksusenanofibresoxide-nanofibresFurthermoremodificationspseudo-capacitorshybridelectricaldouble-layerdetailelectrolyte-basedelectrolyte-freetakenconsiderationhelpdesigningfabricatinghigh-performanceoutputactalternativeLi-ionfutureDevelopmentspolymer-oxide-nanotube-basedsupercapacitors:

Similar Articles

Cited By