Deep learning-based automatic pipeline for 3D needle localization on intra-procedural 3D MRI.

Wenqi Zhou, Xinzhou Li, Fatemeh Zabihollahy, David S Lu, Holden H Wu
Author Information
  1. Wenqi Zhou: Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA. ORCID
  2. Xinzhou Li: Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA.
  3. Fatemeh Zabihollahy: Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA.
  4. David S Lu: Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA.
  5. Holden H Wu: Department of Radiological Sciences, University of California Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA, 90095, USA. HoldenWu@mednet.ucla.edu. ORCID

Abstract

PURPOSE: Accurate and rapid needle localization on 3D magnetic resonance imaging (MRI) is critical for MRI-guided percutaneous interventions. The current workflow requires manual needle localization on 3D MRI, which is time-consuming and cumbersome. Automatic methods using 2D deep learning networks for needle segmentation require manual image plane localization, while 3D networks are challenged by the need for sufficient training datasets. This work aimed to develop an automatic deep learning-based pipeline for accurate and rapid 3D needle localization on in vivo intra-procedural 3D MRI using a limited training dataset.
METHODS: The proposed automatic pipeline adopted Shifted Window (Swin) Transformers and employed a coarse-to-fine segmentation strategy: (1) initial 3D needle feature segmentation with 3D Swin UNEt TRansfomer (UNETR); (2) generation of a 2D reformatted image containing the needle feature; (3) fine 2D needle feature segmentation with 2D Swin Transformer and calculation of 3D needle tip position and axis orientation. Pre-training and data augmentation were performed to improve network training. The pipeline was evaluated via cross-validation with 49 in vivo intra-procedural 3D MR images from preclinical pig experiments. The needle tip and axis localization errors were compared with human intra-reader variation using the Wilcoxon signed rank test, with p < 0.05 considered significant.
RESULTS: The average end-to-end computational time for the pipeline was 6 s per 3D volume. The median Dice scores of the 3D Swin UNETR and 2D Swin Transformer in the pipeline were 0.80 and 0.93, respectively. The median 3D needle tip and axis localization errors were 1.48 mm (1.09 pixels) and 0.98°, respectively. Needle tip localization errors were significantly smaller than human intra-reader variation (median 1.70 mm; p < 0.01).
CONCLUSION: The proposed automatic pipeline achieved rapid pixel-level 3D needle localization on intra-procedural 3D MRI without requiring a large 3D training dataset and has the potential to assist MRI-guided percutaneous interventions.

Keywords

References

  1. Eur Radiol. 2012 Mar;22(3):663-71 [PMID: 21960160]
  2. Radiology. 2017 Apr;283(1):130-139 [PMID: 27861110]
  3. Cardiovasc Intervent Radiol. 2007 Sep-Oct;30(5):928-35 [PMID: 17546404]
  4. J Digit Imaging. 2023 Feb;36(1):153-163 [PMID: 36271210]
  5. Med Phys. 2013 Nov;40(11):112903 [PMID: 24320470]
  6. AJR Am J Roentgenol. 2015 Oct;205(4):W400-10 [PMID: 26397347]
  7. Int J Comput Assist Radiol Surg. 2020 Oct;15(10):1673-1684 [PMID: 32676870]
  8. Clin Gastroenterol Hepatol. 2011 Feb;9(2):161-7 [PMID: 20920597]
  9. Eur Radiol. 2016 Aug;26(8):2462-70 [PMID: 26563349]
  10. Abdom Radiol (NY). 2016 May;41(5):954-62 [PMID: 27118268]
  11. J Magn Reson Imaging. 2008 Feb;27(2):311-25 [PMID: 18219685]
  12. AJR Am J Roentgenol. 2002 May;178(5):1211-20 [PMID: 11959734]
  13. IEEE Trans Med Imaging. 2019 Apr;38(4):1026-1036 [PMID: 30334789]
  14. Cardiovasc Intervent Radiol. 2012 Dec;35(6):1281-94 [PMID: 21785888]
  15. Int J Clin Oncol. 2007 Apr;12(2):85-93 [PMID: 17443275]
  16. IEEE Trans Biomed Eng. 2021 Mar;68(3):807-814 [PMID: 32870782]
  17. J Magn Reson Imaging. 2017 Oct;46(4):935-950 [PMID: 28493526]
  18. Annu Rev Biomed Eng. 2011 Aug 15;13:297-319 [PMID: 21568713]
  19. Med Phys. 2016 Oct;43(10):5347 [PMID: 27782696]
  20. Breast J. 2019 May;25(3):479-483 [PMID: 30924216]
  21. Comput Aided Surg. 2015;20(1):61-72 [PMID: 26359529]
  22. Semin Ultrasound CT MR. 2000 Oct;21(5):337-50 [PMID: 11071615]
  23. J Vasc Interv Radiol. 2021 May;32(5):729-738 [PMID: 33608192]
  24. Endosc Ultrasound. 2015 Apr-Jun;4(2):85-91 [PMID: 26020041]
  25. Abdom Radiol (NY). 2016 Apr;41(4):659-66 [PMID: 27039193]
  26. J Digit Imaging. 2019 Aug;32(4):582-596 [PMID: 31144149]
  27. IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):87-110 [PMID: 35180075]
  28. Annu Rev Biomed Eng. 2010 Aug 15;12:119-42 [PMID: 20415592]
  29. Eur Radiol. 2020 Mar;30(3):1813-1821 [PMID: 31822975]
  30. J Magn Reson Imaging. 2000 Oct;12(4):645-9 [PMID: 11042649]
  31. Int Symp Med Robot. 2019;2019: [PMID: 32864663]
  32. Med Image Anal. 2021 Jan;67:101842 [PMID: 33075639]

Grants

  1. R01 EB031934/NIBIB NIH HHS
  2. R01EB031934/NIBIB NIH HHS
  3. R01EB031934/NIBIB NIH HHS

MeSH Term

Deep Learning
Imaging, Three-Dimensional
Swine
Animals
Needles
Magnetic Resonance Imaging, Interventional
Magnetic Resonance Imaging
Humans

Word Cloud

Created with Highcharts 10.0.03DneedlelocalizationpipelineMRI2DsegmentationSwintrainingautomaticintra-procedural1featuretiprapidusingnetworksTransformeraxiserrorsmedian0MRI-guidedpercutaneousinterventionsmanualdeeplearningimagelearning-basedvivodatasetproposedUNETRhumanintra-readervariationp < 0respectivelyNeedleDeepPURPOSE:Accuratemagneticresonanceimagingcriticalcurrentworkflowrequirestime-consumingcumbersomeAutomaticmethodsrequireplanechallengedneedsufficientdatasetsworkaimeddevelopaccuratelimitedMETHODS:adoptedShiftedWindowTransformersemployedcoarse-to-finestrategy:initialUNEtTRansfomer2generationreformattedcontaining3finecalculationpositionorientationPre-trainingdataaugmentationperformedimprovenetworkevaluatedviacross-validation49MRimagespreclinicalpigexperimentscomparedWilcoxonsignedranktest05consideredsignificantRESULTS:averageend-to-endcomputationaltime6 spervolumeDicescores809348 mm09pixels98°significantlysmaller70 mm01CONCLUSION:achievedpixel-levelwithoutrequiringlargepotentialassistDevicetrackingImageInterventional

Similar Articles

Cited By

No available data.