In vivo imaging of bone collagen dynamics in zebrafish.

Hiromu Hino, Shigeru Kondo, Junpei Kuroda
Author Information
  1. Hiromu Hino: Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
  2. Shigeru Kondo: Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
  3. Junpei Kuroda: Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.

Abstract

Type I collagen plays a pivotal role in shaping bone morphology and determining its physical properties by serving as a template for ossification. Nevertheless, the mechanisms underlying bone collagen formation, particularly the principles governing its orientation, remain unknown owing to the lack of a method that enables continuous in vivo observations. To address this challenge, we constructed a method to visualize bone collagen by tagging with green fluorescent protein (GFP) in zebrafish and observed the interactions between osteoblasts and collagen fibers during bone formation in vivo. When collagen type I alpha 2 chain (Col1a2)-GFP was expressed under the control of the osteoblast-specific promoters or in zebrafish, bone collagen was observed clearly enough to identify its localization, whereas collagen from other organs was not. Therefore, we determined that this method was of sufficient quality for the detailed in vivo observation of bone collagen. Next, bone collagen in the scales, fin rays, and opercular bones of zebrafish was observed in detail, when bone formation is more active. High-magnification imaging showed that Col1a2-GFP can visualize collagen sufficiently to analyze the collagen fiber orientation and microstructure of bones. Furthermore, by simultaneously observation of bone collagen and osteoblasts, we successfully observed dynamic changes in the morphology and position of osteoblasts from the early stages of bone formation. It was also found that the localization pattern and orientation of bone collagen significantly differed depending on the choice of the expression promoter. Both promoters ( and ) used in this study are osteoblast-specific, but their Col1a2-GFP localizing regions within the bone were exclusive, with region localizing mainly to the outer edge of the bone and region localizing to the central area of the bone. This suggests the existence of distinct osteoblast subpopulations with different gene expression profiles, each of which may play a unique role in osteogenesis. These findings would contribute to a better understanding of the mechanisms governing bone collagen formation by osteoblasts.

Keywords

References

  1. Acta Biomater. 2014 Sep;10(9):3815-26 [PMID: 24914825]
  2. Biophys J. 2002 Jan;82(1 Pt 1):493-508 [PMID: 11751336]
  3. Commun Biol. 2020 Apr 23;3(1):190 [PMID: 32327701]
  4. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14767-72 [PMID: 22927373]
  5. Cell Tissue Res. 1988 Sep;253(3):597-607 [PMID: 3052849]
  6. Cell. 2002 Jan 11;108(1):17-29 [PMID: 11792318]
  7. Hum Mutat. 2007 Mar;28(3):209-21 [PMID: 17078022]
  8. Front Genet. 2021 Aug 05;12:675331 [PMID: 34490030]
  9. Nat Methods. 2008 Jul;5(7):605-7 [PMID: 18536722]
  10. Bone. 2019 Aug;125:61-73 [PMID: 31085351]
  11. Bone. 2019 Nov;128:115031 [PMID: 31401301]
  12. Development. 2012 Jul;139(13):2371-80 [PMID: 22627283]
  13. J Anat. 1997 May;190 ( Pt 4):545-61 [PMID: 9183678]
  14. Soft Matter. 2011 Sep 21;7(18):7927-7938 [PMID: 26316880]
  15. J Biomed Mater Res A. 2015 Feb;103(2):489-99 [PMID: 24733774]
  16. Dev Dyn. 2007 Nov;236(11):3031-46 [PMID: 17907202]
  17. Front Cell Dev Biol. 2019 Sep 18;7:178 [PMID: 31620436]
  18. Nature. 1996 Aug 1;382(6590):448-52 [PMID: 8684484]
  19. Genetics. 2006 Oct;174(2):639-49 [PMID: 16959904]
  20. iScience. 2022 Jun 03;25(7):104524 [PMID: 35754731]
  21. Eur J Pharmacol. 2015 Jul 15;759:287-94 [PMID: 25814262]
  22. Front Endocrinol (Lausanne). 2012 Jul 18;3:91 [PMID: 22826703]
  23. Int J Oral Maxillofac Surg. 2008 Apr;37(4):350-6 [PMID: 18272339]
  24. J Bone Miner Res. 2018 Jun;33(6):1166-1182 [PMID: 29461659]
  25. Methods Cell Biol. 2016;133:55-68 [PMID: 27263408]
  26. Nat Protoc. 2012 Mar 08;7(4):654-69 [PMID: 22402635]
  27. J Funct Biomater. 2022 Sep 29;13(4): [PMID: 36278637]
  28. Adv Exp Med Biol. 2006;585:431-41 [PMID: 17120800]
  29. RSC Adv. 2020 Jan 3;10(2):875-885 [PMID: 35494441]
  30. Clin Chim Acta. 2021 Jun;517:133-138 [PMID: 33705765]
  31. Dev Dyn. 2009 Jan;238(1):241-8 [PMID: 19097055]
  32. Development. 2015 Jun 15;142(12):2136-46 [PMID: 26015541]
  33. Dev Biol. 2018 May 15;437(2):105-119 [PMID: 29524434]
  34. PLoS One. 2010 Mar 05;5(3):e9475 [PMID: 20221441]
  35. J R Soc Interface. 2016 Jun;13(119): [PMID: 27335222]
  36. Int J Dev Biol. 2004;48(2-3):233-47 [PMID: 15272389]
  37. Dev Biol. 2018 Sep 1;441(1):4-11 [PMID: 29883658]

Word Cloud

Created with Highcharts 10.0.0bonecollagenformationvivozebrafishobservedosteoblastsorientationmethodlocalizingrolemorphologymechanismsgoverningvisualizeosteoblast-specificpromoterslocalizationobservationbonesimagingCol1a2-GFPexpressionregionTypeplayspivotalshapingdeterminingphysicalpropertiesservingtemplateossificationNeverthelessunderlyingparticularlyprinciplesremainunknownowinglackenablescontinuousobservationsaddresschallengeconstructedtagginggreenfluorescentproteinGFPinteractionsfiberstypealpha2chainCol1a2-GFPexpressedcontrolclearlyenoughidentifywhereasorgansThereforedeterminedsufficientqualitydetailedNextscalesfinraysoperculardetailactiveHigh-magnificationshowedcansufficientlyanalyzefibermicrostructureFurthermoresimultaneouslysuccessfullydynamicchangespositionearlystagesalsofoundpatternsignificantlydiffereddependingchoicepromoterusedstudyregionswithinexclusivemainlyouteredgecentralareasuggestsexistencedistinctosteoblastsubpopulationsdifferentgeneprofilesmayplayuniqueosteogenesisfindingscontributebetterunderstandingdynamicsBoneCalcificationCollagenImagingOsteoblastsZebrafish

Similar Articles

Cited By