Cryogenic electron microscopy and tomography reveal imperfect icosahedral symmetry in alphaviruses.

David Chmielewski, Guan-Chin Su, Jason T Kaelber, Grigore D Pintilie, Muyuan Chen, Jing Jin, Albert J Auguste, Wah Chiu
Author Information
  1. David Chmielewski: Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA. ORCID
  2. Guan-Chin Su: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ORCID
  3. Jason T Kaelber: Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA. ORCID
  4. Grigore D Pintilie: Department of Bioengineering, Stanford University, Stanford, CA 94305, USA. ORCID
  5. Muyuan Chen: Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA.
  6. Jing Jin: Vitalant Research Institute, San Francisco, CA 94118, USA.
  7. Albert J Auguste: Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ORCID
  8. Wah Chiu: Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA. ORCID

Abstract

Alphaviruses are spherical, enveloped RNA viruses with two-layered icosahedral architecture. The structures of many alphaviruses have been studied using cryogenic electron microscopy (cryo-EM) reconstructions, which impose icosahedral symmetry on the viral particles. Using cryogenic electron tomography (cryo-ET), we revealed a polarized symmetry defect in the icosahedral lattice of Chikungunya virus (CHIKV) in situ, similar to the late budding particles, suggesting the inherent imperfect symmetry originates from the final pinch-off of assembled virions. We further demonstrated this imperfect symmetry is also present in in vitro purified CHIKV and Mayaro virus, another arthritogenic alphavirus. We employed a subparticle-based single-particle analysis protocol to circumvent the icosahedral imperfection and boosted the resolution of the structure of the CHIKV to ∼3 Å resolution, which revealed detailed molecular interactions between glycoprotein E1-E2 heterodimers in the transmembrane region and multiple lipid-like pocket factors located in a highly conserved hydrophobic pocket. This complementary use of in situ cryo-ET and single-particle cryo-EM approaches provides a more precise structural description of near-icosahedral viruses and valuable insights to guide the development of structure-based antiviral therapies against alphaviruses.

Keywords

References

  1. Elife. 2016 Nov 15;5: [PMID: 27845625]
  2. Nat Commun. 2020 Oct 2;11(1):4953 [PMID: 33009400]
  3. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11090-5 [PMID: 19549863]
  4. J Virol. 2003 Mar;77(6):3441-50 [PMID: 12610119]
  5. ACS Nano. 2015 Sep 22;9(9):8898-906 [PMID: 26275088]
  6. Nature. 2010 Dec 2;468(7324):709-12 [PMID: 21124458]
  7. Nature. 2021 Oct;598(7882):677-681 [PMID: 34646021]
  8. Nat Microbiol. 2022 Aug;7(8):1270-1279 [PMID: 35773421]
  9. Biophys J. 2018 Feb 6;114(3):619-630 [PMID: 29414708]
  10. Cell. 2019 Jun 13;177(7):1725-1737.e16 [PMID: 31080061]
  11. EMBO Rep. 2011 Jun;12(6):602-6 [PMID: 21566648]
  12. Elife. 2013 Apr 02;2:e00435 [PMID: 23577234]
  13. J Virol. 2000 Mar;74(6):2663-70 [PMID: 10684281]
  14. Microbiol Rev. 1994 Sep;58(3):491-562 [PMID: 7968923]
  15. Nat Methods. 2014 Jan;11(1):63-5 [PMID: 24213166]
  16. Structure. 2012 Feb 8;20(2):205-14 [PMID: 22325770]
  17. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  18. Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11608-11612 [PMID: 30348794]
  19. Nat Commun. 2018 Dec 14;9(1):5326 [PMID: 30552337]
  20. J Struct Biol. 2015 Nov;192(2):216-21 [PMID: 26278980]
  21. Sci Transl Med. 2023 May 17;15(696):eade8273 [PMID: 37196061]
  22. Biopolymers. 2012 Sep;97(9):742-60 [PMID: 22696409]
  23. Curr Opin Virol. 2020 Dec;45:25-33 [PMID: 32683295]
  24. Virology. 2015 Oct;484:412-420 [PMID: 26051211]
  25. J Virol. 2003 Nov;77(22):12022-32 [PMID: 14581539]
  26. Viruses. 2022 Nov 27;14(12): [PMID: 36560655]
  27. Cell. 2021 Aug 19;184(17):4414-4429.e19 [PMID: 34416146]
  28. Nat Methods. 2020 Mar;17(3):328-334 [PMID: 32042190]
  29. Cell. 2021 Aug 19;184(17):4430-4446.e22 [PMID: 34416147]
  30. Viruses. 2022 May 05;14(5): [PMID: 35632709]
  31. J Virol. 2007 Dec;81(24):13631-9 [PMID: 17913808]
  32. Nat Commun. 2021 May 24;12(1):3038 [PMID: 34031424]
  33. Viruses. 2022 Apr 11;14(4): [PMID: 35458522]
  34. Nat Commun. 2018 Apr 19;9(1):1552 [PMID: 29674632]
  35. EMBO J. 2000 Oct 2;19(19):5081-91 [PMID: 11013211]
  36. Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877 [PMID: 31588918]
  37. Emerg Infect Dis. 2015 Oct;21(10):1742-50 [PMID: 26401714]
  38. J Virol. 2012 Mar;86(5):2585-99 [PMID: 22190727]
  39. Structure. 1996 May 15;4(5):519-29 [PMID: 8736551]
  40. Elife. 2018 Nov 09;7: [PMID: 30412051]
  41. Cell Host Microbe. 2008 Dec 11;4(6):592-9 [PMID: 19064259]
  42. Sci Rep. 2019 Aug 7;9(1):11461 [PMID: 31391514]
  43. J Virol. 2008 Dec;82(24):12374-83 [PMID: 18922878]
  44. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):519-530 [PMID: 29872003]
  45. J Virol. 2014 Dec;88(24):14364-79 [PMID: 25275138]
  46. PLoS Comput Biol. 2019 Aug 21;15(8):e1006602 [PMID: 31433804]
  47. Nat Rev Dis Primers. 2023 Apr 6;9(1):17 [PMID: 37024497]
  48. Acta Trop. 2019 Oct;198:105093 [PMID: 31325416]
  49. Structure. 2008 May;16(5):673-83 [PMID: 18462672]
  50. Nat Methods. 2019 Nov;16(11):1161-1168 [PMID: 31611690]
  51. Nat Methods. 2017 Apr;14(4):331-332 [PMID: 28250466]
  52. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  53. EMBO J. 2011 Aug 09;30(18):3854-63 [PMID: 21829169]
  54. Nat Commun. 2021 Feb 23;12(1):1238 [PMID: 33623019]
  55. Am J Trop Med Hyg. 1957 Nov;6(6):1012-6 [PMID: 13487973]
  56. Cell Discov. 2022 Feb 11;8(1):12 [PMID: 35149682]
  57. J Virol. 2002 Oct;76(20):10188-94 [PMID: 12239293]

Grants

  1. R01 AI153433/NIAID NIH HHS
  2. S10 OD021600/NIH HHS

Word Cloud

Created with Highcharts 10.0.0icosahedralsymmetryimperfectalphaviruseselectroncryo-EMcryo-ETCHIKVvirusescryogenicmicroscopyparticlestomographyrevealedvirussitualphavirussingle-particleresolutionpocketAlphavirusessphericalenvelopedRNAtwo-layeredarchitecturestructuresmanystudiedusingreconstructionsimposeviralUsingpolarizeddefectlatticeChikungunyasimilarlatebuddingsuggestinginherentoriginatesfinalpinch-offassembledvirionsdemonstratedalsopresentvitropurifiedMayaroanotherarthritogenicemployedsubparticle-basedanalysisprotocolcircumventimperfectionboostedstructure∼3 ÅdetailedmolecularinteractionsglycoproteinE1-E2heterodimerstransmembraneregionmultiplelipid-likefactorslocatedhighlyconservedhydrophobiccomplementaryuseapproachesprovidesprecisestructuraldescriptionnear-icosahedralvaluableinsightsguidedevelopmentstructure-basedantiviraltherapiesCryogenicreveal

Similar Articles

Cited By