Use of Sentinel Surveillance Platforms for Monitoring SARS-CoV-2 Activity: Evidence From Analysis of Kenya Influenza Sentinel Surveillance Data.

Daniel Owusu, Linus K Ndegwa, Jorim Ayugi, Peter Kinuthia, Rosalia Kalani, Mary Okeyo, Nancy A Otieno, Gilbert Kikwai, Bonventure Juma, Peninah Munyua, Francis Kuria, Emmanuel Okunga, Ann C Moen, Gideon O Emukule
Author Information
  1. Daniel Owusu: Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, United States. ORCID
  2. Linus K Ndegwa: Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya. ORCID
  3. Jorim Ayugi: Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. ORCID
  4. Peter Kinuthia: Henry Jackson Foundation, Nairobi, Kenya. ORCID
  5. Rosalia Kalani: Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya. ORCID
  6. Mary Okeyo: National Influenza Centre Laboratory, National Public Health Laboratories, Ministry of Health, Nairobi, Kenya. ORCID
  7. Nancy A Otieno: Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. ORCID
  8. Gilbert Kikwai: Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya. ORCID
  9. Bonventure Juma: Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya. ORCID
  10. Peninah Munyua: Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya. ORCID
  11. Francis Kuria: Directorate of Public Health, Ministry of Health, Nairobi, Kenya. ORCID
  12. Emmanuel Okunga: Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya. ORCID
  13. Ann C Moen: Influenza Division, US Centers for Disease Control and Prevention, Atlanta, GA, United States. ORCID
  14. Gideon O Emukule: Global Influenza Branch, Influenza Division, US Centers for Disease Control and Prevention, Nairobi, Kenya. ORCID

Abstract

BACKGROUND: Little is known about the cocirculation of influenza and SARS-CoV-2 viruses during the COVID-19 pandemic and the use of respiratory disease sentinel surveillance platforms for monitoring SARS-CoV-2 activity in sub-Saharan Africa.
OBJECTIVE: We aimed to describe influenza and SARS-CoV-2 cocirculation in Kenya and how the SARS-CoV-2 data from influenza sentinel surveillance correlated with that of universal national surveillance.
METHODS: From April 2020 to March 2022, we enrolled 7349 patients with severe acute respiratory illness or influenza-like illness at 8 sentinel influenza surveillance sites in Kenya and collected demographic, clinical, underlying medical condition, vaccination, and exposure information, as well as respiratory specimens, from them. Respiratory specimens were tested for influenza and SARS-CoV-2 by real-time reverse transcription polymerase chain reaction. The universal national-level SARS-CoV-2 data were also obtained from the Kenya Ministry of Health. The universal national-level SARS-CoV-2 data were collected from all health facilities nationally, border entry points, and contact tracing in Kenya. Epidemic curves and Pearson r were used to describe the correlation between SARS-CoV-2 positivity in data from the 8 influenza sentinel sites in Kenya and that of the universal national SARS-CoV-2 surveillance data. A logistic regression model was used to assess the association between influenza and SARS-CoV-2 coinfection with severe clinical illness. We defined severe clinical illness as any of oxygen saturation <90%, in-hospital death, admission to intensive care unit or high dependence unit, mechanical ventilation, or a report of any danger sign (ie, inability to drink or eat, severe vomiting, grunting, stridor, or unconsciousness in children younger than 5 years) among patients with severe acute respiratory illness.
RESULTS: Of the 7349 patients from the influenza sentinel surveillance sites, 76.3% (n=5606) were younger than 5 years. We detected any influenza (A or B) in 8.7% (629/7224), SARS-CoV-2 in 10.7% (768/7199), and coinfection in 0.9% (63/7165) of samples tested. Although the number of samples tested for SARS-CoV-2 from the sentinel surveillance was only 0.2% (60 per week vs 36,000 per week) of the number tested in the universal national surveillance, SARS-CoV-2 positivity in the sentinel surveillance data significantly correlated with that of the universal national surveillance (Pearson r=0.58; P<.001). The adjusted odds ratios (aOR) of clinical severe illness among participants with coinfection were similar to those of patients with influenza only (aOR 0.91, 95% CI 0.47-1.79) and SARS-CoV-2 only (aOR 0.92, 95% CI 0.47-1.82).
CONCLUSIONS: Influenza substantially cocirculated with SARS-CoV-2 in Kenya. We found a significant correlation of SARS-CoV-2 positivity in the data from 8 influenza sentinel surveillance sites with that of the universal national SARS-CoV-2 surveillance data. Our findings indicate that the influenza sentinel surveillance system can be used as a sustainable platform for monitoring respiratory pathogens of pandemic potential or public health importance.

Keywords

References

  1. Sci Rep. 2021 Oct 28;11(1):21259 [PMID: 34711897]
  2. Viruses. 2022 Mar 17;14(3): [PMID: 35337033]
  3. Epidemiology. 2015 Nov;26(6):862-72 [PMID: 26133025]
  4. Wellcome Open Res. 2020 Jul 7;5:162 [PMID: 35330938]
  5. Euro Surveill. 2020 Nov;25(47): [PMID: 33243355]
  6. PLoS One. 2021 Aug 3;16(8):e0255646 [PMID: 34343203]
  7. JAMA. 2021 Jun 8;325(22):2247-2248 [PMID: 34028492]
  8. Lancet. 2022 Apr 16;399(10334):1463-1464 [PMID: 35344735]
  9. MMWR Morb Mortal Wkly Rep. 2020 Sep 18;69(37):1305-1309 [PMID: 32941415]
  10. PLoS Negl Trop Dis. 2021 Nov 29;15(11):e0009997 [PMID: 34843492]
  11. Lancet Respir Med. 2014 Jun;2(6):445-54 [PMID: 24717637]
  12. Am J Infect Control. 2014 Sep;42(9):985-90 [PMID: 25179331]
  13. Lancet Reg Health Am. 2021 Sep;1:100015 [PMID: 34386788]
  14. Lancet. 2018 Mar 31;391(10127):1285-1300 [PMID: 29248255]
  15. Sci Rep. 2021 May 24;11(1):10730 [PMID: 34031515]
  16. Emerg Infect Dis. 2020 Aug;26(8):1933-1935 [PMID: 32339092]
  17. Am J Epidemiol. 2004 Apr 1;159(7):623-33 [PMID: 15033640]
  18. PLoS One. 2014 Jun 23;9(6):e98615 [PMID: 24955962]
  19. Int J Infect Dis. 2020 Apr;93:375-387 [PMID: 32109627]
  20. Vaccine. 2021 Mar 15;39 Suppl 1:A6-A14 [PMID: 33041103]
  21. MMWR Morb Mortal Wkly Rep. 2021 Jul 23;70(29):1013-1019 [PMID: 34292924]
  22. PNAS Nexus. 2022 Jul 04;1(3):pgac071 [PMID: 35860600]
  23. Lancet Glob Health. 2023 May;11(5):e729-e739 [PMID: 37061311]
  24. J Glob Health. 2019 Dec;9(2):020421 [PMID: 31673337]
  25. Lancet Reg Health Am. 2022 Mar;7:100132 [PMID: 35291567]
  26. Emerg Infect Dis. 2022;28(13):S159-S167 [PMID: 36502403]
  27. Lancet Respir Med. 2019 Jan;7(1):69-89 [PMID: 30553848]
  28. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  29. Am J Epidemiol. 2008 Apr 1;167(7):775-85 [PMID: 18230677]
  30. BMC Infect Dis. 2017 Jan 11;17(1):60 [PMID: 28077093]
  31. Nat Commun. 2022 Mar 31;13(1):1721 [PMID: 35361789]
  32. BMC Infect Dis. 2018 Nov 14;18(1):567 [PMID: 30428846]
  33. Pediatr Pulmonol. 2020 Oct;55(10):2565-2575 [PMID: 32725955]

MeSH Term

Child
Humans
SARS-CoV-2
Influenza, Human
COVID-19
Coinfection
Hospital Mortality
Kenya
Pandemics
Sentinel Surveillance

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2surveillanceinfluenzasentinelKenyadatarespiratoryuniversalsevereillness0nationalpatients8sitesclinicaltestedcocirculationmonitoringusedpositivitycoinfectionaORCOVID-19pandemicdescribecorrelated7349acutecollectedspecimensnational-levelhealthPearsoncorrelationunityounger5yearsamong7%samplesnumberperweek95%CI47-1InfluenzaSentinelSurveillanceBACKGROUND:Littleknownvirusesusediseaseplatformsactivitysub-SaharanAfricaOBJECTIVE:aimedMETHODS:April2020March2022enrolledinfluenza-likedemographicunderlyingmedicalconditionvaccinationexposureinformationwellRespiratoryreal-timereversetranscriptionpolymerasechainreactionalsoobtainedMinistryHealthfacilitiesnationallyborderentrypointscontacttracingEpidemiccurvesrlogisticregressionmodelassessassociationdefinedoxygensaturation<90%in-hospitaldeathadmissionintensivecarehighdependencemechanicalventilationreportdangersignieinabilitydrinkeatvomitinggruntingstridorunconsciousnesschildrenRESULTS:763%n=5606detectedB629/722410768/71999%63/7165Although2%60vs36000significantlyr=058P<001adjustedoddsratiosparticipantssimilar91799282CONCLUSIONS:substantiallycocirculatedfoundsignificantfindingsindicatesystemcansustainableplatformpathogenspotentialpublicimportanceUsePlatformsMonitoringActivity:EvidenceAnalysisDataepidemiclocaloutbreakinfectionpathogen

Similar Articles

Cited By

No available data.