Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics.

Shuaifeng Hu, Jarla Thiesbrummel, Jorge Pascual, Martin Stolterfoht, Atsushi Wakamiya, Henry J Snaith
Author Information
  1. Shuaifeng Hu: Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom. ORCID
  2. Jarla Thiesbrummel: Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
  3. Jorge Pascual: Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. ORCID
  4. Martin Stolterfoht: Institute for Physics and Astronomy, University of Potsdam,14476 Potsdam-Golm, Germany. ORCID
  5. Atsushi Wakamiya: Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. ORCID
  6. Henry J Snaith: Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom. ORCID

Abstract

All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.

References

  1. Adv Mater. 2014 Oct 8;26(37):6454-60 [PMID: 25123496]
  2. Science. 2020 Dec 11;370(6522):1300-1309 [PMID: 33303611]
  3. Nat Commun. 2018 Sep 18;9(1):3806 [PMID: 30228277]
  4. Angew Chem Int Ed Engl. 2023 Dec 18;62(51):e202313374 [PMID: 37921234]
  5. ACS Nano. 2021 May 25;15(5):8350-8362 [PMID: 33969997]
  6. J Phys Chem Lett. 2019 Sep 5;10(17):5000-5007 [PMID: 31407911]
  7. Energy Environ Sci. 2023 Nov 27;17(2):760-769 [PMID: 38269299]
  8. Joule. 2022 Apr 20;6(4):861-883 [PMID: 35711469]
  9. Nat Commun. 2023 Mar 11;14(1):1342 [PMID: 36906625]
  10. J Am Chem Soc. 2015 Jul 15;137(27):8696-9 [PMID: 26125203]
  11. Adv Mater. 2022 Apr;34(16):e2110351 [PMID: 35174560]
  12. ACS Appl Mater Interfaces. 2022 Dec 7;14(48):53960-53970 [PMID: 36413793]
  13. ACS Energy Lett. 2024 Oct 02;9(10):5206 [PMID: 39416677]
  14. Adv Sci (Weinh). 2022 Apr;9(11):e2106054 [PMID: 35152567]
  15. Nat Commun. 2017 Jun 01;8:15684 [PMID: 28569749]
  16. Nature. 2022 Aug;608(7922):317-323 [PMID: 35948711]
  17. J Am Chem Soc. 2018 Mar 14;140(10):3775-3783 [PMID: 29465246]
  18. J Phys Chem B. 2005 Oct 13;109(40):18868-75 [PMID: 16853428]
  19. Nano Lett. 2012 Sep 12;12(9):4925-31 [PMID: 22913390]
  20. Nature. 2013 Sep 19;501(7467):395-8 [PMID: 24025775]
  21. J Am Chem Soc. 2022 Oct 5;144(39):17848-17856 [PMID: 36130403]
  22. ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15321-15331 [PMID: 36853929]
  23. ACS Appl Mater Interfaces. 2022 Apr 27;14(16):18302-18312 [PMID: 35412305]
  24. Adv Sci (Weinh). 2024 Jan;11(1):e2304811 [PMID: 37968252]
  25. J Am Chem Soc. 2016 Aug 10;138(31):9919-26 [PMID: 27427774]
  26. ACS Energy Lett. 2022 Oct 14;7(10):3197-3203 [PMID: 36277134]
  27. ACS Appl Mater Interfaces. 2022 Mar 23;14(11):13431-13439 [PMID: 35262337]
  28. J Am Chem Soc. 2018 Oct 10;140(40):12775-12784 [PMID: 30189142]
  29. J Am Chem Soc. 2021 Jul 28;143(29):10970-10976 [PMID: 34196528]
  30. Nanoscale. 2016 Apr 14;8(14):7621-30 [PMID: 26987754]
  31. Science. 2016 Jan 8;351(6269):151-5 [PMID: 26744401]
  32. Adv Mater. 2022 Dec;34(49):e2205769 [PMID: 36177689]
  33. J Phys Chem C Nanomater Interfaces. 2015 Mar 19;119(11):5755-5760 [PMID: 25838846]
  34. J Am Chem Soc. 2009 May 6;131(17):6050-1 [PMID: 19366264]
  35. Science. 2023 Feb 17;379(6633):683-690 [PMID: 36795834]
  36. Adv Mater. 2021 May;33(21):e2006545 [PMID: 33861877]
  37. J Am Chem Soc. 2017 Nov 15;139(45):16297-16309 [PMID: 29095597]
  38. Precis Chem. 2023 Apr 13;1(2):69-82 [PMID: 37124243]
  39. Sci Adv. 2021 Jan 22;7(4): [PMID: 33523938]
  40. Chem Mater. 2022 Aug 23;34(16):7232-7241 [PMID: 36032552]
  41. Chem Sci. 2015 Jan 1;6(1):613-617 [PMID: 28706629]
  42. Small Methods. 2023 Mar;7(3):e2201276 [PMID: 36717279]
  43. Adv Mater. 2023 Aug;35(32):e2301125 [PMID: 37247429]
  44. Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12658-12662 [PMID: 28671739]
  45. Nat Commun. 2023 Apr 15;14(1):2166 [PMID: 37061510]
  46. Small Methods. 2023 Sep;7(9):e2300202 [PMID: 37148173]
  47. Nature. 2023 Dec;624(7990):69-73 [PMID: 37938775]
  48. Nat Commun. 2021 Nov 15;12(1):6603 [PMID: 34782603]
  49. Science. 2023 Apr 28;380(6643):404-409 [PMID: 37104579]
  50. Adv Mater. 2022 Jul;34(26):e2110356 [PMID: 35439839]
  51. Adv Mater. 2023 Sep;35(39):e2303674 [PMID: 37325993]
  52. Sci Bull (Beijing). 2023 Jun 30;68(12):1271-1282 [PMID: 37258377]
  53. J Am Chem Soc. 2015 Dec 23;137(50):15907-14 [PMID: 26617161]
  54. ACS Energy Lett. 2023 May 24;8(6):2728-2737 [PMID: 37324541]
  55. ACS Mater Lett. 2022 Dec 5;4(12):2638-2644 [PMID: 36507194]
  56. Angew Chem Int Ed Engl. 2022 Mar 25;:e202201209 [PMID: 35332979]
  57. Nat Commun. 2023 Feb 20;14(1):932 [PMID: 36805448]
  58. Nature. 2017 Oct 5;550(7674):92-95 [PMID: 28869967]
  59. J Am Chem Soc. 2022 Feb 2;144(4):1700-1708 [PMID: 35041406]
  60. J Phys Chem Lett. 2021 Dec 16;12(49):11772-11778 [PMID: 34855410]
  61. J Am Chem Soc. 2015 Apr 8;137(13):4460-8 [PMID: 25780941]
  62. iScience. 2018 Nov 30;9:337-346 [PMID: 30453163]
  63. ACS Appl Mater Interfaces. 2023 Jul 26;15(29):34862-34873 [PMID: 37443450]
  64. Chemistry. 2022 Feb 24;28(12):e202103919 [PMID: 34878203]
  65. J Am Chem Soc. 2019 May 29;141(21):8627-8637 [PMID: 31063361]
  66. J Phys Chem Lett. 2022 Jan 13;13(1):118-129 [PMID: 34962406]
  67. Small. 2017 Sep;13(33): [PMID: 28692766]
  68. Adv Mater. 2016 Jul;28(25):5121-5 [PMID: 26505740]
  69. Sci Adv. 2022 Nov 25;8(47):eadd0377 [PMID: 36427306]
  70. Nature. 2023 Jun;618(7963):74-79 [PMID: 36977463]
  71. Adv Mater. 2022 Jan;34(1):e2105844 [PMID: 34626031]
  72. Adv Mater. 2022 Feb;34(6):e2107729 [PMID: 34676933]
  73. Angew Chem Int Ed Engl. 2023 Apr 3;62(15):e202300759 [PMID: 36788712]
  74. Adv Mater. 2016 Oct;28(40):8990-8997 [PMID: 27545111]
  75. Nat Commun. 2015 Jul 20;6:7747 [PMID: 26190275]
  76. Adv Mater. 2014 Nov 5;26(41):7122-7 [PMID: 25212785]
  77. Sci Rep. 2012;2:591 [PMID: 22912919]
  78. Nature. 2021 Feb;590(7847):587-593 [PMID: 33627807]
  79. J Phys Chem Lett. 2020 May 7;11(9):3546-3556 [PMID: 32298590]
  80. Small. 2024 Jan;20(2):e2305736 [PMID: 37661361]
  81. J Am Chem Soc. 2022 Mar 30;144(12):5552-5561 [PMID: 35296136]
  82. Nat Commun. 2022 Jan 10;13(1):60 [PMID: 35013195]
  83. Chem Rev. 2021 Feb 24;121(4):2230-2291 [PMID: 33476131]
  84. Angew Chem Int Ed Engl. 2018 Oct 1;57(40):13221-13225 [PMID: 30110137]
  85. J Phys Chem Lett. 2020 Aug 6;11(15):5980-5986 [PMID: 32633521]
  86. Nat Mater. 2023 Feb;22(2):216-224 [PMID: 36702888]
  87. Inorg Chem. 2013 Aug 5;52(15):9019-38 [PMID: 23834108]
  88. J Am Chem Soc. 2020 Feb 5;142(5):2364-2374 [PMID: 31917562]
  89. J Am Chem Soc. 2017 Aug 16;139(32):11117-11124 [PMID: 28704048]
  90. Nano Lett. 2018 Jun 13;18(6):3600-3607 [PMID: 29701473]
  91. J Phys Chem Lett. 2015 Oct 1;6(19):3808-14 [PMID: 26722875]
  92. J Am Chem Soc. 2023 Dec 20;145(50):27307-27315 [PMID: 38063310]
  93. J Am Chem Soc. 2014 Jun 4;136(22):8094-9 [PMID: 24823301]
  94. Adv Mater. 2023 Mar;35(13):e2205027 [PMID: 36681866]
  95. Science. 2019 May 3;364(6439):475-479 [PMID: 31000592]
  96. Small. 2024 Mar;20(13):e2307206 [PMID: 38072800]
  97. Nat Mater. 2015 Oct;14(10):1032-9 [PMID: 26301766]
  98. Chem Commun (Camb). 2019 Mar 12;55(22):3251-3253 [PMID: 30810121]
  99. Angew Chem Int Ed Engl. 2020 Aug 3;59(32):13354-13361 [PMID: 32359089]
  100. Nature. 2019 Jul;571(7764):245-250 [PMID: 31292555]
  101. Adv Mater. 2020 Apr;32(14):e1908107 [PMID: 32100401]
  102. Nat Commun. 2020 Jun 16;11(1):3008 [PMID: 32546736]
  103. ACS Energy Lett. 2023 Jun 28;8(7):3188-3195 [PMID: 37469391]
  104. Chem Commun (Camb). 2022 Jan 27;58(9):1366-1369 [PMID: 34989377]
  105. Nanomicro Lett. 2022 Aug 16;14(1):165 [PMID: 35974239]
  106. Adv Mater. 2021 Apr;33(15):e2005504 [PMID: 33660306]
  107. ACS Appl Mater Interfaces. 2022 Feb 9;14(5):6852-6858 [PMID: 35080172]
  108. J Am Chem Soc. 2023 May 10;145(18):10275-10284 [PMID: 37115733]
  109. Adv Mater. 2020 Aug;32(31):e1907623 [PMID: 32583926]
  110. J Am Chem Soc. 2020 Apr 1;142(13):6251-6260 [PMID: 32129999]
  111. Nat Rev Chem. 2022 Jan;6(1):1-3 [PMID: 37117617]
  112. Adv Mater. 2022 Dec;34(51):e2204726 [PMID: 36245328]
  113. Science. 2012 Nov 2;338(6107):643-7 [PMID: 23042296]
  114. Nat Commun. 2020 Mar 6;11(1):1245 [PMID: 32144245]
  115. ACS Appl Mater Interfaces. 2022 Dec 21;14(50):56290-56297 [PMID: 36475579]
  116. J Phys Chem Lett. 2015 Dec 3;6(23):4827-39 [PMID: 26560696]
  117. Science. 2022 Jul 29;377(6605):531-534 [PMID: 35901131]
  118. Sci Rep. 2016 Oct 18;6:35705 [PMID: 27752138]
  119. Nat Commun. 2021 Sep 24;12(1):5624 [PMID: 34561460]
  120. J Am Chem Soc. 2017 Aug 23;139(33):11443-11450 [PMID: 28756676]
  121. Acc Chem Res. 2016 Feb 16;49(2):286-93 [PMID: 26820627]
  122. Nat Nanotechnol. 2015 May;10(5):391-402 [PMID: 25947963]
  123. Nat Commun. 2023 Mar 31;14(1):1819 [PMID: 37002238]
  124. Small. 2023 May;19(20):e2207480 [PMID: 36840656]
  125. Angew Chem Int Ed Engl. 2024 Jan 22;63(4):e202317446 [PMID: 38030582]
  126. ACS Appl Mater Interfaces. 2022 Mar 30;14(12):14729-14738 [PMID: 35312272]
  127. Science. 2023 Nov 17;382(6672):810-815 [PMID: 37972154]
  128. Small. 2019 Nov;15(47):e1903613 [PMID: 31650696]
  129. Adv Mater. 2023 Mar;35(9):e2208320 [PMID: 36482007]
  130. Science. 2022 Dec 23;378(6626):1295-1300 [PMID: 36548423]
  131. Nature. 2023 Jan;613(7945):676-681 [PMID: 36379225]
  132. Nat Commun. 2019 Jun 12;10(1):2560 [PMID: 31189871]
  133. ACS Energy Lett. 2019 Sep 13;4(9):2301-2307 [PMID: 31544151]
  134. Science. 2022 Apr 22;376(6591):416-420 [PMID: 35446656]
  135. Science. 2016 Nov 18;354(6314):861-865 [PMID: 27856902]
  136. J Am Chem Soc. 2023 Apr 5;145(13):7528-7539 [PMID: 36947735]
  137. Nano Lett. 2016 Dec 14;16(12):7739-7747 [PMID: 27960463]
  138. Joule. 2020 May 20;4(5):1054-1069 [PMID: 32467877]
  139. Adv Mater. 2019 Dec;31(51):e1905247 [PMID: 31709688]
  140. Science. 2022 Jul 29;377(6605):495-501 [PMID: 35901165]
  141. Nature. 2023 Jun;618(7963):80-86 [PMID: 36990110]
  142. Nature. 2022 May;605(7909):268-273 [PMID: 35292753]
  143. Angew Chem Int Ed Engl. 2022 Dec 19;61(51):e202213560 [PMID: 36300589]
  144. Nature. 2020 Jul;583(7818):790-795 [PMID: 32728239]
  145. Adv Mater. 2017 Jan;29(2): [PMID: 28066989]
  146. J Am Chem Soc. 2015 Sep 9;137(35):11445-52 [PMID: 26313318]
  147. Adv Mater. 2020 Jul;32(27):e1907392 [PMID: 32053273]
  148. ACS Appl Mater Interfaces. 2021 Mar 10;13(9):10822-10836 [PMID: 33629583]
  149. Adv Mater. 2022 May;34(18):e2110241 [PMID: 35230736]
  150. Chem Rev. 2019 Mar 13;119(5):3036-3103 [PMID: 30821144]
  151. Nat Commun. 2019 Oct 3;10(1):4498 [PMID: 31582749]
  152. Acc Chem Res. 2016 Feb 16;49(2):311-9 [PMID: 26797391]
  153. J Am Chem Soc. 2016 Sep 28;138(38):12360-3 [PMID: 27622903]
  154. Nanomaterials (Basel). 2022 Jun 15;12(12): [PMID: 35745403]
  155. Sci Adv. 2022 Jul 15;8(28):eabo7422 [PMID: 35857518]
  156. Sci Rep. 2017 Jan 13;7:40267 [PMID: 28084313]
  157. Science. 2018 Oct 26;362(6413):449-453 [PMID: 30309904]
  158. Chem Soc Rev. 2018 Jun 18;47(12):4581-4610 [PMID: 29682652]
  159. Nat Commun. 2021 May 14;12(1):2853 [PMID: 33990560]
  160. Adv Mater. 2024 Jan;36(3):e2308240 [PMID: 37967309]
  161. Adv Mater. 2023 Dec;35(52):e2302552 [PMID: 37067957]
  162. Sci Adv. 2021 Nov 12;7(46):eabj1799 [PMID: 34757790]
  163. Nature. 2021 Oct;598(7881):444-450 [PMID: 34671136]
  164. Nature. 2022 Mar;603(7899):73-78 [PMID: 35038717]
  165. Nat Commun. 2022 Dec 2;13(1):7454 [PMID: 36460635]
  166. Nanoscale. 2011 Oct 5;3(10):4088-93 [PMID: 21897986]
  167. ACS Energy Lett. 2022 Apr 8;7(4):1246-1254 [PMID: 35558900]
  168. Chem Rev. 2020 Aug 12;120(15):7867-7918 [PMID: 32786671]
  169. Angew Chem Int Ed Engl. 2023 Aug 14;62(33):e202306712 [PMID: 37365795]
  170. Adv Sci (Weinh). 2016 Sep 15;4(1):1600269 [PMID: 28105403]
  171. Chem Rev. 2019 Mar 13;119(5):3140-3192 [PMID: 30638375]
  172. J Am Chem Soc. 2020 Feb 26;142(8):3989-3996 [PMID: 32031790]
  173. Adv Mater. 2019 Dec;31(52):e1902762 [PMID: 31631441]
  174. Adv Mater. 2024 Jan;36(2):e2308706 [PMID: 37983869]
  175. Chemistry. 2016 Dec 19;22(51):18583-18592 [PMID: 27862415]
  176. Angew Chem Int Ed Engl. 2021 Sep 20;60(39):21583-21591 [PMID: 34228886]
  177. Nat Commun. 2020 Oct 16;11(1):5254 [PMID: 33067448]
  178. ACS Nano. 2016 Jun 28;10(6):6306-14 [PMID: 27187798]
  179. Adv Mater. 2017 Dec;29(47): [PMID: 29134752]
  180. Chem Sci. 2021 Sep 27;12(40):13513-13519 [PMID: 34777771]
  181. J Phys Chem Lett. 2014 Mar 20;5(6):1035-9 [PMID: 26270984]
  182. Nat Energy. 2024;9(2):172-183 [PMID: 38419691]
  183. Nature. 2023 Aug;620(7976):994-1000 [PMID: 37290482]
  184. Science. 2014 Jul 18;345(6194):295-8 [PMID: 25035487]
  185. Science. 2015 Jul 31;349(6247):aaa6760 [PMID: 26228157]
  186. ACS Appl Mater Interfaces. 2022 Feb 16;14(6):7796-7804 [PMID: 35129320]
  187. J Am Chem Soc. 2023 Jul 26;145(29):15997-16014 [PMID: 37432784]
  188. J Am Chem Soc. 2020 Sep 2;142(35):15049-15057 [PMID: 32786780]
  189. J Phys Chem Lett. 2014 Mar 20;5(6):1004-11 [PMID: 26270980]
  190. Chem Rev. 2023 Mar 22;123(6):3160-3236 [PMID: 36877871]
  191. Adv Mater. 2023 Jun;35(22):e2300352 [PMID: 36906929]
  192. ACS Omega. 2017 Oct 20;2(10):7016-7021 [PMID: 31457283]
  193. Science. 2022 Jan 21;375(6578):302-306 [PMID: 35050659]
  194. Adv Mater. 2023 Jun;35(23):e2301028 [PMID: 37026996]
  195. Science. 2021 May 7;372(6542):618-622 [PMID: 33958474]
  196. J Phys Chem Lett. 2021 Nov 25;12(46):11323-11329 [PMID: 34780190]
  197. Nature. 2023 Aug;620(7974):545-551 [PMID: 37224876]
  198. RSC Adv. 2021 Jan 15;11(6):3264-3271 [PMID: 35424289]
  199. Nanoscale. 2017 Feb 16;9(7):2569-2578 [PMID: 28150836]
  200. ACS Cent Sci. 2022 Nov 07;9(1):14-26 [PMID: 36712494]
  201. Science. 2022 May 13;376(6594):762-767 [PMID: 35549402]
  202. Science. 2021 Aug 20;373(6557):902-907 [PMID: 34413234]
  203. Adv Mater. 2016 Jul;28(26):5214-21 [PMID: 27145346]
  204. J Am Chem Soc. 2019 Jul 10;141(27):10812-10820 [PMID: 31259546]
  205. Chem Mater. 2023 May 25;35(11):4181-4191 [PMID: 37332682]
  206. Adv Mater. 2017 Sep;29(34): [PMID: 28692764]
  207. Nature. 2022 Nov;611(7935):278-283 [PMID: 36049505]
  208. ACS Appl Mater Interfaces. 2021 Oct 6;13(39):46488-46498 [PMID: 34551256]

Word Cloud

Created with Highcharts 10.0.0cellsefficiencymixedSn-Pbtandemsolarnarrowbandgapperovskitefilmswellpotentialsingle-junctionperovskitesperformanceall-perovskitetandemsSnfilmimperfectionsthinsurfacesissuesfarmodificationssurfaceefficientAll-perovskiteattractingconsiderableinterestphotovoltaicsresearchowingsurpasstheoreticallimitcost-effectivesustainablemannerThanksbandgap-bowingeffecttin-leadpossesscloseidealconstructingmatchedwide-bandgapneatlead-basedcounterpartshoweveryetreachOnemainobstaclesneedovercomethe─oftentimes─lowqualitylargelycausedfacileoxidationIIIVdifficult-to-controlcrystallizationdynamicsAdditionaldetrimentalintroducedparticularlyvulnerableincludingtopbottominterfacesgrainboundariesDueresultantdevicedistinctlylowertheoreticallyachievablemaximumRobustimprovementsthereforecriticaladvancementfieldReviewdescribesoriginscoverseffortsmadetowardreachingbetterunderstandingparticularrespectimprovedstabilityadditionalsooutlineimportantintegratingsubcellsachievingreliabledouble-multi-junctionFutureworkfocuscharacterizationvisualizationspecificdefectstrackingevolutiondifferentexternalstimuliguidingturnprocessingstablecelldevicesNarrowBandgapMetalHalidePerovskitesAll-PerovskiteTandemPhotovoltaics

Similar Articles

Cited By