Endothelial CXCR2 deficiency attenuates renal inflammation and glycocalyx shedding through NF-κB signaling in diabetic kidney disease.

Siyuan Cui, Xin Chen, Jiayu Li, Wei Wang, Deqi Meng, Shenglong Zhu, Shiwei Shen
Author Information
  1. Siyuan Cui: Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
  2. Xin Chen: Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
  3. Jiayu Li: Wuxi School of Medicine, Jiangnan University, Wuxi, China.
  4. Wei Wang: Wuxi School of Medicine, Jiangnan University, Wuxi, China.
  5. Deqi Meng: Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
  6. Shenglong Zhu: Wuxi School of Medicine, Jiangnan University, Wuxi, China. shenglongzhu@jiangnan.edu.cn.
  7. Shiwei Shen: Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China. 9862023221@jiangnan.edu.cn.

Abstract

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD.
METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions.
RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD.
CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.

Keywords

References

  1. Cell Cycle. 2019 Nov;18(21):2928-2938 [PMID: 31496351]
  2. Kidney Int. 2018 Aug;94(2):326-345 [PMID: 29861058]
  3. Front Immunol. 2021 Jan 20;11:601639 [PMID: 33552057]
  4. Front Immunol. 2022 Jun 20;13:896645 [PMID: 35795659]
  5. Biomed Pharmacother. 2020 Feb;122:109693 [PMID: 31812015]
  6. Int J Mol Sci. 2020 Dec 11;21(24): [PMID: 33322614]
  7. Front Pharmacol. 2020 Oct 06;11:573557 [PMID: 33123011]
  8. Int J Mol Sci. 2022 Feb 16;23(4): [PMID: 35216283]
  9. Int J Mol Sci. 2023 Jan 06;24(2): [PMID: 36674624]
  10. PLoS One. 2013;8(2):e55852 [PMID: 23457483]
  11. J Am Soc Nephrol. 2018 Nov;29(11):2671-2695 [PMID: 30341150]
  12. Nutrients. 2022 Jul 20;14(14): [PMID: 35889923]
  13. Gut. 2022 Apr 27;: [PMID: 35477863]
  14. J Clin Med. 2020 Sep 18;9(9): [PMID: 32961903]
  15. Biochem Biophys Rep. 2021 Feb 01;25:100916 [PMID: 33553685]
  16. Pflugers Arch. 2007 Jun;454(3):345-59 [PMID: 17256154]
  17. Am J Physiol Renal Physiol. 2006 Jan;290(1):F111-6 [PMID: 16091582]
  18. Matrix Biol Plus. 2022 Mar 17;14:100107 [PMID: 35392184]
  19. Matrix Biol. 2018 Oct;71-72:421-431 [PMID: 29408548]
  20. Kidney Int. 2023 Feb;103(2):282-296 [PMID: 36470394]
  21. Kidney Int. 2018 May;93(5):1086-1097 [PMID: 29433915]
  22. Metabolism. 2023 Feb;139:155377 [PMID: 36521550]
  23. Heliyon. 2023 Apr 05;9(4):e15197 [PMID: 37095921]
  24. Arch Med Res. 2021 Jan;52(1):58-68 [PMID: 32868134]
  25. Kidney Int. 2021 Oct;100(4):809-823 [PMID: 34147551]
  26. Diabetologia. 2021 Aug;64(8):1866-1879 [PMID: 33987714]
  27. Front Endocrinol (Lausanne). 2022 Dec 09;13:1079725 [PMID: 36568108]
  28. Diabetes. 2017 Mar;66(3):763-778 [PMID: 27899487]
  29. Cell Death Dis. 2022 Apr 13;13(4):340 [PMID: 35418167]
  30. Kidney Int. 2019 Oct;96(4):957-970 [PMID: 31402170]
  31. Int J Mol Sci. 2020 May 27;21(11): [PMID: 32471207]
  32. Diabetes. 2023 Jun 1;72(6):781-794 [PMID: 36930735]
  33. Metabolism. 2022 Jun;131:155177 [PMID: 35218794]
  34. JCI Insight. 2023 Mar 8;8(5): [PMID: 36749631]
  35. Crit Care. 2022 Sep 12;26(1):273 [PMID: 36096866]
  36. Nat Commun. 2021 Apr 22;12(1):2368 [PMID: 33888696]
  37. Circulation. 2021 Jan 12;143(2):163-177 [PMID: 33222501]
  38. Physiol Rev. 2008 Apr;88(2):451-87 [PMID: 18391170]
  39. Kidney Int. 2022 Aug;102(2):248-260 [PMID: 35661785]
  40. Kidney Int. 2022 Oct;102(4):766-779 [PMID: 35779608]
  41. Am J Physiol Renal Physiol. 2015 Feb 15;308(4):F287-97 [PMID: 25411387]
  42. Expert Rev Clin Immunol. 2014 May;10(5):593-619 [PMID: 24678812]
  43. Diabetes. 2022 Dec 1;71(12):2739-2750 [PMID: 36095260]
  44. Crit Care. 2019 Jan 17;23(1):16 [PMID: 30654825]
  45. Front Physiol. 2021 Dec 16;12:782677 [PMID: 34975537]
  46. Front Immunol. 2021 Feb 22;12:603416 [PMID: 33692782]
  47. Am J Pathol. 2020 Apr;190(4):742-751 [PMID: 32035881]
  48. JCI Insight. 2020 Oct 2;5(19): [PMID: 32956070]
  49. Kidney Int. 2020 May;97(5):858-860 [PMID: 32331597]
  50. Biomedicines. 2021 Apr 22;9(5): [PMID: 33922243]
  51. Nat Commun. 2023 Jan 24;14(1):390 [PMID: 36693830]
  52. Kidney Int. 2020 May;97(5):951-965 [PMID: 32037077]
  53. Nat Rev Nephrol. 2019 Mar;15(3):144-158 [PMID: 30692665]
  54. World J Diabetes. 2023 May 15;14(5):460-480 [PMID: 37273258]
  55. Br J Clin Pharmacol. 2015 Sep;80(3):389-402 [PMID: 25778676]
  56. J Diabetes Res. 2014;2014:953740 [PMID: 24812636]
  57. Kidney Int. 2012 Nov;82(9):949-51 [PMID: 23064188]
  58. Saudi J Biol Sci. 2022 Jul;29(7):103313 [PMID: 35707823]
  59. Nat Med. 2019 May;25(5):805-813 [PMID: 31011203]
  60. Rev Physiol Biochem Pharmacol. 2021;179:31-71 [PMID: 32979084]
  61. Diabetes Care. 2022 Dec 1;45(12):3075-3090 [PMID: 36189689]
  62. Exp Eye Res. 2021 Dec;213:108846 [PMID: 34801534]
  63. Ann Intensive Care. 2020 Jun 22;10(1):85 [PMID: 32572647]
  64. Endocrinol Metab (Seoul). 2023 Feb;38(1):43-55 [PMID: 36891650]
  65. Cell Commun Signal. 2020 Jul 8;18(1):105 [PMID: 32641054]

MeSH Term

Animals
Humans
Mice
Diabetic Nephropathies
Endothelial Cells
Endothelium
Glucose
Glycocalyx
Inflammation
Mice, Knockout
NF-kappa B
Receptors, Chemokine
Receptors, Interleukin-8B
Diabetes Complications

Chemicals

Glucose
NF-kappa B
Receptors, Chemokine
CXCR2 protein, human
Cxcr2 protein, mouse
Receptors, Interleukin-8B

Word Cloud

Created with Highcharts 10.0.0CXCR2DKDinflammationglycocalyxrenalsheddingendothelialdiabetickidneymiceNF-κBdiseasepersistentexpressionCxcr2knockoutconditionsdeficiencysignalingtreatmentearly2roleglomerularwellinflammatorypatientscellsGECshighfunctionactivationEndothelialBACKGROUND:incidencecontinuesrapidlyincreaselimitedavailableoptionsOnehallmarksunderlyingmolecularmechanismsinjuryremainpoorlyunderstoodC-X-Cchemokinereceptorplaysimportantprogressioninflammation-relatedvasculardiseasesmaybridgeendotheliumMETHODS:MultiplemethodsemployedassesslevelsligandsresponseeffectsexaminedtypemousemodelspecificallyDKD-Cxcr2culturedglucoseRESULTS:associateddeclineendothelial-specificsignificantlyimprovedreducedcellinfiltrationsimultaneouslydecreasedproinflammatoryfactorschemokinestissuesuppressedcomparedModulatingalsoaffectedglucose-inducedMechanisticallyinhibitedtherebyregulatingrestoringalleviatingCONCLUSIONS:TakentogetherexacerbatesregulationpathwayleadingdeterioratingprotectivedysfunctionsuggestingpotentialpromisingtherapeutictargetattenuatesDiabeticGlycocalyxInflammation

Similar Articles

Cited By