Causal relationship between genetically predicted type 2 diabetes mellitus and male infertility.

Cuihua Fan, Jiandong Zhang, Dongbiao Qiu
Author Information
  1. Cuihua Fan: Department of Blood Transfusion, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
  2. Jiandong Zhang: The Center of Information, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
  3. Dongbiao Qiu: Department of Blood Transfusion, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.

Abstract

Background: Diabetes mellitus (DM) stands as the most prevalent endocrine abnormality affecting the physiological systems and organs and impairing the male reproductive functions. Type 2 Diabetes Mellitus (T2DM), accounting for about 90-95% of DM, is closely associated with male infertility. However, the magnitude of the causal relationships between T2DM and male infertility remains unclear. The current investigation was to explore the causal relationship between T2DM and male infertility utilizing the Mendelian Randomization (MR) analysis.
Methods: A two-sample MR (2SMR) analysis was conducted to investigate the causal relationship between T2DM and male infertility in the European population from the genome-wide association study (GWAS) summary data that was publicly accessible. GWAS for T2DM and male infertility were extracted from the IEU Open GWAS Project database, with the resulting data encompassing 680 cases and 72,799 controls as the outcome data. Five MR methods were employed for the 2SMR analyses, namely the MR-Egger, weighted median estimation (WME), weighted mode (WM), inverse-variance weighted (IVW), and simple mode. The primary analytical technique utilized in this study was the IVW method, and a multivariate MR analysis was executed to examine the potential mediating influences of T2DM on male infertility.
Results: Following were the odds ratios (ORs) and associated 95% CIs derived from IVW (fixed effects), MR-Egger, WM, WME, and simple mode approaches: 0.824 (95% CI 0.703-0.966), 0.726 (95% CI 0.527-1.001), 0.827 (95% CI 0.596-1.150), 0.841 (95% CI 0.654-1.082), and 0.875 (95% CI 0.544-1.405), respectively. The outcomes of the heterogeneity tests were =0.378 and =0.384, respectively, implying no heterogeneity. Egger-intercept outcomes were =0.374, highlighting the absence of pleiotropy. The stability of the results was affirmed through the leave-one-out analysis. Notably, all values surpassed 10, indicating the absence of weak bias attributed to instrument variables(IVs).
Conclusions: This research furnishes evidence supporting a causal association between T2DM and male infertility. These insights offer a foundation for future investigations aiming to establish the association between genetically predicted T2DM and male infertility. These outcomes suggest the significance of active monitoring and proactive measures for preventing infertility in male individuals with T2DM. Furthermore, careful consideration is required for individuals of reproductive age to prevent and treat T2DM.

Keywords

References

  1. J Natl Cancer Inst. 2018 Sep 1;110(9):1035-1038 [PMID: 29788239]
  2. PLoS One. 2012;7(6):e38840 [PMID: 22719961]
  3. Sultan Qaboos Univ Med J. 2012 Feb;12(1):5-18 [PMID: 22375253]
  4. Curr Diabetes Rev. 2017;13(6):573-581 [PMID: 27875946]
  5. J Obstet Gynaecol. 2021 Apr;41(3):439-446 [PMID: 32705912]
  6. JAMA. 2017 Nov 21;318(19):1925-1926 [PMID: 29164242]
  7. Antioxidants (Basel). 2021 Oct 30;10(11): [PMID: 34829617]
  8. Am J Epidemiol. 2011 Jun 15;173(12):1392-403 [PMID: 21555716]
  9. J Diabetes Investig. 2020 Jul;11(4):856-864 [PMID: 31869513]
  10. J Androl. 2012 Mar-Apr;33(2):145-53 [PMID: 21474785]
  11. Genet Epidemiol. 2013 Nov;37(7):658-65 [PMID: 24114802]
  12. Lancet Diabetes Endocrinol. 2018 Jan;6(1):69-80 [PMID: 28847479]
  13. Genet Epidemiol. 2016 May;40(4):304-14 [PMID: 27061298]
  14. J Cell Biochem. 2009 Dec 1;108(5):1094-101 [PMID: 19760637]
  15. Front Endocrinol (Lausanne). 2018 Nov 22;9:675 [PMID: 30524372]
  16. In Vivo. 2021 Sep-Oct;35(5):2503-2511 [PMID: 34410936]
  17. Andrology. 2023 Feb;11(2):399-416 [PMID: 36416060]
  18. Spermatogenesis. 2012 Oct 1;2(4):253-263 [PMID: 23248766]
  19. BMJ. 2018 Jul 12;362:k601 [PMID: 30002074]
  20. Fertil Steril. 2017 Sep;108(3):393-406 [PMID: 28760517]
  21. Eur J Epidemiol. 2017 May;32(5):377-389 [PMID: 28527048]
  22. Asian J Androl. 2015 Nov-Dec;17(6):948-53 [PMID: 25814158]
  23. Stat Methods Med Res. 2017 Oct;26(5):2333-2355 [PMID: 26282889]
  24. Diabetes Care. 2022 Jan 1;45(Suppl 1):S17-S38 [PMID: 34964875]
  25. Minerva Urol Nefrol. 2007 Jun;59(2):131-5 [PMID: 17571048]
  26. Genet Epidemiol. 2016 Nov;40(7):597-608 [PMID: 27625185]
  27. Nat Genet. 2018 May;50(5):693-698 [PMID: 29686387]
  28. Front Endocrinol (Lausanne). 2018 May 25;9:268 [PMID: 29887834]
  29. BMJ. 2018 Sep 4;362:k1497 [PMID: 30181166]
  30. Hum Reprod Update. 2018 Jan 1;24(1):86-105 [PMID: 29136166]
  31. Front Endocrinol (Lausanne). 2022 Nov 02;13:1035338 [PMID: 36407300]
  32. Hum Mol Genet. 2014 Sep 15;23(R1):R89-98 [PMID: 25064373]
  33. Lancet. 2020 Oct 17;396(10258):1285-1306 [PMID: 32679112]
  34. Diabetes Res Clin Pract. 2022 Jan;183:109119 [PMID: 34879977]
  35. Nat Rev Urol. 2018 May;15(5):287-307 [PMID: 29532805]
  36. PLoS One. 2022 Jun 9;17(6):e0269191 [PMID: 35679284]
  37. Andrology. 2020 Sep;8(5):1005-1020 [PMID: 32353207]
  38. Curr Epidemiol Rep. 2017;4(4):330-345 [PMID: 29226067]
  39. Andrology. 2022 Mar;10(3):426-440 [PMID: 34904793]
  40. Reprod Biomed Online. 2015 Nov;31(5):593-604 [PMID: 26380863]
  41. Food Funct. 2017 Mar 22;8(3):1215-1226 [PMID: 28225103]
  42. Andrologia. 2020 Dec;52(11):e13816 [PMID: 32951228]
  43. Int J Epidemiol. 2019 Oct 1;48(5):1457-1467 [PMID: 31335958]
  44. Oncotarget. 2018 Jan 4;9(4):5321-5336 [PMID: 29435181]
  45. Nephrol Dial Transplant. 2010 May;25(5):1394-8 [PMID: 20190244]

MeSH Term

Male
Humans
Diabetes Mellitus, Type 2
Genome-Wide Association Study
Infertility, Male
Causality
Databases, Factual

Word Cloud

Created with Highcharts 10.0.0maleT2DMinfertility095%causalCIrelationshipMRanalysisGWASassociationdataweightedmodeIVWoutcomes=0DiabetesmellitusDMreproductive2associatedMendelian2SMRstudyMR-EggerWMEWMsimplerespectivelyheterogeneityabsencegeneticallypredictedindividualsBackground:standsprevalentendocrineabnormalityaffectingphysiologicalsystemsorgansimpairingfunctionsTypeMellitusaccounting90-95%closelyHowevermagnituderelationshipsremainsunclearcurrentinvestigationexploreutilizingRandomizationMethods:two-sampleconductedinvestigateEuropeanpopulationgenome-widesummarypubliclyaccessibleextractedIEUOpenProjectdatabaseresultingencompassing680cases72799controlsoutcomeFivemethodsemployedanalysesnamelymedianestimationinverse-varianceprimaryanalyticaltechniqueutilizedmethodmultivariateexecutedexaminepotentialmediatinginfluencesResults:FollowingoddsratiosORsCIsderivedfixedeffectsapproaches:824703-0966726527-1001827596-1150841654-1082875544-1405tests378384implyingEgger-intercept374highlightingpleiotropystabilityresultsaffirmedleave-one-outNotablyvaluessurpassed10indicatingweakbiasattributedinstrumentvariablesIVsConclusions:researchfurnishesevidencesupportinginsightsofferfoundationfutureinvestigationsaimingestablishsuggestsignificanceactivemonitoringproactivemeasurespreventingFurthermorecarefulconsiderationrequiredagepreventtreatCausaltypediabetesrandomization

Similar Articles

Cited By