Toward viewing behavior for aerial scene categorization.

Chenxi Jiang, Zhenzhong Chen, Jeremy M Wolfe
Author Information
  1. Chenxi Jiang: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China.
  2. Zhenzhong Chen: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China. zzchen@whu.edu.cn. ORCID
  3. Jeremy M Wolfe: Harvard Medical School, Boston, MA, USA.

Abstract

Previous work has demonstrated similarities and differences between aerial and terrestrial image viewing. Aerial scene categorization, a pivotal visual processing task for gathering geoinformation, heavily depends on rotation-invariant information. Aerial image-centered research has revealed effects of low-level features on performance of various aerial image interpretation tasks. However, there are fewer studies of viewing behavior for aerial scene categorization and of higher-level factors that might influence that categorization. In this paper, experienced subjects' eye movements were recorded while they were asked to categorize aerial scenes. A typical viewing center bias was observed. Eye movement patterns varied among categories. We explored the relationship of nine image statistics to observers' eye movements. Results showed that if the images were less homogeneous, and/or if they contained fewer or no salient diagnostic objects, viewing behavior became more exploratory. Higher- and object-level image statistics were predictive at both the image and scene category levels. Scanpaths were generally organized and small differences in scanpath randomness could be roughly captured by critical object saliency. Participants tended to fixate on critical objects. Image statistics included in this study showed rotational invariance. The results supported our hypothesis that the availability of diagnostic objects strongly influences eye movements in this task. In addition, this study provides supporting evidence for Loschky et al.'s (Journal of Vision, 15(6), 11, 2015) speculation that aerial scenes are categorized on the basis of image parts and individual objects. The findings were discussed in relation to theories of scene perception and their implications for automation development.

Keywords

References

  1. Neurosci Biobehav Rev. 2019 Jan;96:353-366 [PMID: 30621861]
  2. Int J Environ Res Public Health. 2018 May 30;15(6): [PMID: 29848956]
  3. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714): [PMID: 28044013]
  4. J Vis. 2015;15(6):11 [PMID: 26024458]
  5. Neuroimage. 2008 Jan 15;39(2):647-60 [PMID: 17977024]
  6. Cogn Res Princ Implic. 2024 Jan 7;9(1):1 [PMID: 38185767]
  7. Behav Res Methods. 2007 May;39(2):175-91 [PMID: 17695343]
  8. Nat Med. 2023 Aug;29(8):1941-1946 [PMID: 37501017]
  9. IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):802-17 [PMID: 16640265]
  10. Psychol Sci. 2009 Jan;20(1):6-10 [PMID: 19037907]
  11. J Vis. 2011 Jun 07;11(7): [PMID: 21669859]
  12. Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):E9015-E9024 [PMID: 30171168]
  13. J Vis. 2018 Dec 3;18(13):11 [PMID: 30561493]
  14. J Vis. 2009 Jul 09;9(7):4 [PMID: 19761319]
  15. Nature. 2020 Jul;583(7814):103-108 [PMID: 32494012]
  16. Science. 2010 Nov 5;330(6005):845-51 [PMID: 21051642]
  17. Front Psychol. 2021 Dec 14;12:733021 [PMID: 34970183]
  18. Nat Neurosci. 2000 Nov;3 Suppl:1199-204 [PMID: 11127838]
  19. J Exp Psychol Hum Percept Perform. 2013 Apr;39(2):318-22 [PMID: 23276111]
  20. J Vis. 2007 Jan 31;7(1):10 [PMID: 17461678]
  21. J Vis. 2008 Jan 11;8(1):4.1-9 [PMID: 18318607]
  22. Annu Rev Psychol. 1999;50:243-71 [PMID: 10074679]
  23. Nature. 2008 Mar 20;452(7185):352-5 [PMID: 18322462]
  24. Atten Percept Psychophys. 2019 Jan;81(1):35-46 [PMID: 30191476]
  25. J Exp Child Psychol. 2020 Jun;194:104782 [PMID: 32179293]
  26. Med Phys. 2007 Feb;34(2):379-87 [PMID: 17388154]
  27. J Vis. 2018 Aug 1;18(8):1 [PMID: 30073270]
  28. Atten Percept Psychophys. 2016 Oct;78(7):2135-51 [PMID: 27192994]
  29. Theor Popul Biol. 1977 Dec;12(3):263-85 [PMID: 564087]
  30. PLoS One. 2013;8(1):e52737 [PMID: 23326353]
  31. J Vis. 2023 Apr 3;23(4):8 [PMID: 37103010]
  32. Animals (Basel). 2022 Aug 29;12(17): [PMID: 36077940]
  33. Front Psychol. 2020 Jan 14;10:2915 [PMID: 32010016]
  34. Acta Psychol (Amst). 2019 Jun;197:23-31 [PMID: 31077995]
  35. Nat Neurosci. 2021 Jun;24(6):786-798 [PMID: 33958804]
  36. Anim Cogn. 2023 Jan;26(1):153-173 [PMID: 36352174]
  37. Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202 [PMID: 26953178]
  38. Prog Brain Res. 2006;155:23-36 [PMID: 17027377]
  39. Vision Res. 2013 Oct 18;91:62-77 [PMID: 23954536]
  40. J Vis. 2007 Nov 21;7(14):4.1-17 [PMID: 18217799]
  41. Neuron. 2019 Jan 2;101(1):178-192.e7 [PMID: 30497771]
  42. Nat Commun. 2021 Apr 6;12(1):2065 [PMID: 33824315]
  43. J Exp Psychol Hum Percept Perform. 2022 Aug;48(8):871-888 [PMID: 35708933]
  44. Psychol Sci. 2016 Jul;27(7):1036-42 [PMID: 27207874]
  45. Cogn Psychol. 2003 Aug;47(1):43-86 [PMID: 12852935]
  46. PLoS One. 2014 May 01;9(5):e95848 [PMID: 24788808]
  47. Cereb Cortex. 2016 Jul;26(7):3310-22 [PMID: 27146315]
  48. J Vis. 2009 Mar 13;9(3):6.1-15 [PMID: 19757945]
  49. Cogn Psychol. 2016 Mar;85:43-77 [PMID: 26803802]
  50. Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32329-32339 [PMID: 33288707]
  51. Percept Psychophys. 2002 Aug;64(6):882-95 [PMID: 12269296]

Grants

  1. R01 CA207490/NCI NIH HHS
  2. R01 EY017001/NEI NIH HHS
  3. EY017001/NEI NIH HHS
  4. CA207490/NCI NIH HHS

MeSH Term

Humans
Photic Stimulation
Visual Perception
Eye Movements
Automation
Records

Word Cloud

Created with Highcharts 10.0.0imageaerialviewingscenecategorizationmovementsstatisticsobjectsAerialbehavioreyedifferencestaskfewerscenesEyeshoweddiagnosticcriticalImagestudyPreviousworkdemonstratedsimilaritiesterrestrialpivotalvisualprocessinggatheringgeoinformationheavilydependsrotation-invariantinformationimage-centeredresearchrevealedeffectslow-levelfeaturesperformancevariousinterpretationtasksHoweverstudieshigher-levelfactorsmightinfluencepaperexperiencedsubjects'recordedaskedcategorizetypicalcenterbiasobservedmovementpatternsvariedamongcategoriesexploredrelationshipnineobservers'Resultsimageslesshomogeneousand/orcontainedsalientbecameexploratoryHigher-object-levelpredictivecategorylevelsScanpathsgenerallyorganizedsmallscanpathrandomnessroughlycapturedobjectsaliencyParticipantstendedfixateincludedrotationalinvarianceresultssupportedhypothesisavailabilitystronglyinfluencesadditionprovidessupportingevidenceLoschkyetal'sJournalVision156112015speculationcategorizedbasispartsindividualfindingsdiscussedrelationtheoriesperceptionimplicationsautomationdevelopmentTowardScene

Similar Articles

Cited By