Repurposing fusidic acid as an antimicrobial against enterococci with a low probability of resistance development.

Mark M Abdelmassih, Maha M Ismail, Mona T Kashef, Tamer Essam
Author Information
  1. Mark M Abdelmassih: Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
  2. Maha M Ismail: Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
  3. Mona T Kashef: Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt. mona.kashef@pharma.cu.edu.eg.
  4. Tamer Essam: Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.

Abstract

Drug repurposing constitutes a strategy to combat antimicrobial resistance, by using agents with known safety, pharmacokinetics, and pharmacodynamics. Previous studies have implemented new fusidic acid (FA) front-loading-dose regimens, allowing higher serum levels than those achievable with ordinary doses. As susceptibility breakpoints are affected by serum level, we evaluated the repurposing of FA as an antimicrobial product against enterococci. FA minimum inhibitory concentrations (MICs) against standard enterococci strains; Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 27270 were 2 and 4 µg/mL, respectively. The MIC against 98 enterococcal clinical isolates was ≤ 8 µg/mL; all would be susceptible if categorized according to recalculated breakpoints (≥ 16 µg/mL), based on the serum level achieved using the front-loading regimen. FA administration in vivo, using the BALB/c mouse infection model, significantly reduced bacterial burden by two to three log units in the liver and spleen of mice infected with vancomycin-susceptible and -resistant strains. Exposure of the standard enterococcal strains to increasing, but not fixed, FA concentrations resulted in resistant strains (MIC = 128 µg/mL), with thicker cell walls and slower growth rates. Only one mutation (M651I) was detected in the fusA gene of the resistant strain derived from serial passage of E. faecium ATCC 27270, which was retained in the revertant strain after passage in the FA-free medium. In conclusion, FA can be repurposed as an antimicrobial drug against enterococci with a low probability of mutational resistance development, and can be employed for treatment of infections attributable to vancomycin-resistant enterococci.

Keywords

References

  1. Protein Eng. 2001 Jun;14(6):421-5 [PMID: 11477222]
  2. Diagn Microbiol Infect Dis. 2017 Apr;87(4):338-342 [PMID: 28109549]
  3. J Antimicrob Chemother. 2000 Sep;46(3):429-36 [PMID: 10980170]
  4. Microbes Infect. 2023 Sep-Oct;25(7):105167 [PMID: 37271368]
  5. J Clin Microbiol. 1995 Jan;33(1):24-7 [PMID: 7699051]
  6. Antibiotics (Basel). 2022 Aug 03;11(8): [PMID: 36009920]
  7. Clin Microbiol Rev. 2012 Oct;25(4):661-81 [PMID: 23034325]
  8. Can J Microbiol. 2019 Jan;65(1):34-44 [PMID: 30248271]
  9. Diagn Microbiol Infect Dis. 2011 May;70(1):101-11 [PMID: 21513848]
  10. Antibiotics (Basel). 2023 Jan 06;12(1): [PMID: 36671309]
  11. Clin Vaccine Immunol. 2008 Feb;15(2):293-6 [PMID: 18077622]
  12. Cell Mol Life Sci. 2016 Dec;73(23):4471-4492 [PMID: 27392605]
  13. Genome Biol. 2008;9(7):R110 [PMID: 18611278]
  14. Mol Microbiol. 2019 Mar;111(3):811-824 [PMID: 30582877]
  15. J Clin Microbiol. 1995 Jul;33(7):1712-5 [PMID: 7665633]
  16. PLoS One. 2015 Nov 25;10(11):e0143863 [PMID: 26606133]
  17. Front Microbiol. 2019 Oct 25;10:2431 [PMID: 31708901]
  18. BMC Microbiol. 2018 Sep 3;18(1):101 [PMID: 30176803]
  19. Sci Rep. 2017 Jul 18;7(1):5733 [PMID: 28720810]
  20. ACS Infect Dis. 2021 Feb 12;7(2):493-505 [PMID: 33522241]
  21. J Antimicrob Chemother. 2001 Jul;48 Suppl 1:17-28 [PMID: 11420334]
  22. J Chemother. 2017 Apr;29(2):74-82 [PMID: 27351108]
  23. Antimicrob Resist Infect Control. 2021 May 1;10(1):75 [PMID: 33933162]
  24. PLoS One. 2021 Jan 22;16(1):e0245732 [PMID: 33481910]
  25. BMC Infect Dis. 2019 May 31;19(1):486 [PMID: 31151413]
  26. Antibiotics (Basel). 2021 Dec 19;10(12): [PMID: 34943764]
  27. Arch Pharm (Weinheim). 2020 Nov;353(11):e2000168 [PMID: 32776618]
  28. Clin Infect Dis. 2006 Feb 1;42(3):394-400 [PMID: 16392088]
  29. NPJ Biofilms Microbiomes. 2023 Apr 6;9(1):16 [PMID: 37024490]
  30. Indian J Microbiol. 2010 Oct;50(4):412-8 [PMID: 22282608]
  31. Eur J Clin Microbiol Infect Dis. 2021 Nov;40(11):2349-2361 [PMID: 34169445]
  32. Microorganisms. 2022 Dec 21;11(1): [PMID: 36677316]
  33. J Biol Chem. 1992 Apr 25;267(12):8383-9 [PMID: 1314826]
  34. J Mol Biol. 1991 Feb 20;217(4):721-9 [PMID: 2005621]
  35. Parasitol Res. 2013 Nov;112(11):3859-63 [PMID: 23949312]
  36. Cold Spring Harb Perspect Med. 2016 Jan 04;6(1):a025437 [PMID: 26729758]
  37. J Clin Microbiol. 2003 Jan;41(1):5-14 [PMID: 12517819]
  38. Commun Dis Intell (2018). 2022 Apr 26;46: [PMID: 35469555]
  39. Clin Infect Dis. 2011 Jun;52 Suppl 7:S513-9 [PMID: 21546628]
  40. J Infect Dis. 2019 Aug 9;220(6):1061-1070 [PMID: 31058287]
  41. Antimicrob Agents Chemother. 2013 Jan;57(1):498-507 [PMID: 23147726]
  42. Clin Infect Dis. 2011 Jun;52 Suppl 7:S477-86 [PMID: 21546624]
  43. Biology (Basel). 2021 Dec 29;11(1): [PMID: 35053044]

MeSH Term

Fusidic Acid
Animals
Microbial Sensitivity Tests
Drug Repositioning
Enterococcus faecium
Anti-Bacterial Agents
Mice
Mice, Inbred BALB C
Gram-Positive Bacterial Infections
Enterococcus faecalis
Drug Resistance, Bacterial
Disease Models, Animal
Enterococcus
Female
Humans

Chemicals

Fusidic Acid
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0FAenterococciantimicrobialstrainsEnterococcusresistanceusingacidserumATCCfaeciumrepurposingfusidicbreakpointslevelconcentrationsstandardfaecalis27270enterococcalresistantstrainpassagecanlowprobabilitydevelopmentRepurposingDrugconstitutesstrategycombatagentsknownsafetypharmacokineticspharmacodynamicsPreviousstudiesimplementednewfront-loading-doseregimensallowinghigherlevelsachievableordinarydosessusceptibilityaffectedevaluatedproductminimuminhibitoryMICs2921224 µg/mLrespectivelyMIC98clinicalisolateswas ≤ 8 µg/mLsusceptiblecategorizedaccordingrecalculated≥ 16 µg/mLbasedachievedfront-loadingregimenadministrationvivoBALB/cmouseinfectionmodelsignificantlyreducedbacterialburdentwothreelogunitsliverspleenmiceinfectedvancomycin-susceptible-resistantExposureincreasingfixedresultedMIC = 128 µg/mLthickercellwallsslowergrowthratesonemutationM651IdetectedfusAgenederivedserialEretainedrevertantFA-freemediumconclusionrepurposeddrugmutationalemployedtreatmentinfectionsattributablevancomycin-resistantFusidicTreatmentVancomycin-resistant

Similar Articles

Cited By