Integrative Transcriptome Analysis of mRNA and miRNA in Pepper's Response to Infection.

Yuan Li, Nan Wang, Jianwen Guo, Xianjun Zhou, Xueyi Bai, Muhammad Azeem, Liyun Zhu, Lin Chen, Moli Chu, Hui Wang, Wei Cheng
Author Information
  1. Yuan Li: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  2. Nan Wang: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  3. Jianwen Guo: College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
  4. Xianjun Zhou: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  5. Xueyi Bai: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  6. Muhammad Azeem: College of Life Sciences, Anhui Normal University, Wuhu 241000, China. ORCID
  7. Liyun Zhu: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  8. Lin Chen: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  9. Moli Chu: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  10. Hui Wang: College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
  11. Wei Cheng: College of Life Sciences, Anhui Normal University, Wuhu 241000, China. ORCID

Abstract

Phytophthora blight of pepper is a notorious disease caused by the oomycete pathogen , which poses a great threat to global pepper production. MicroRNA (miRNA) is a class of non-coding small RNAs that regulate gene expressions by altering the translation efficiency or stability of targeted mRNAs, which play important roles in the regulation of a plant's response to pathogens. Herein, time-series mRNA-seq libraries and small RNA-seq libraries were constructed using pepper roots from the resistant line CM334 and the susceptible line EC01 inoculated with at 0, 6, 24, and 48 h post-inoculation, respectively. For mRNA-seq analysis, a total of 2159 and 2971 differentially expressed genes (DEGs) were identified in CM334 and EC01, respectively. For miRNA-seq analysis, 491 pepper miRNAs were identified, including 330 known miRNAs and 161 novel miRNAs. Among them, 69 and 88 differentially expressed miRNAs (DEMs) were identified in CM334 and EC01, respectively. Examination of DEMs and their targets revealed 22 regulatory networks, predominantly featuring up-regulated miRNAs corresponding to down-regulated target genes. Notably, these DEM-DEG regulatory networks exhibited significant overlap between CM334 and EC01, suggesting that they might contribute to pepper's basal defense against . Furthermore, five selected DEMs (miR166, miR1171, miR395, miR530 and miRN2) and their target genes underwent qRT-PCR validation, confirming a consistent negative correlation in the expression patterns of miRNAs and their targets. This comprehensive analysis provides novel insights into the regulatory networks of miRNAs and their targets, offering valuable contributions to our understanding of pepper's defense mechanisms against .

Keywords

References

  1. Mol Plant. 2022 Apr 4;15(4):671-688 [PMID: 34968734]
  2. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  3. Science. 2006 Sep 1;313(5791):1261-6 [PMID: 16946064]
  4. Theor Appl Genet. 2022 Jan;135(1):233-242 [PMID: 34636959]
  5. Plant Cell Rep. 2021 Oct;40(10):1831-1844 [PMID: 34230985]
  6. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  7. Planta. 2018 Jan;247(1):127-138 [PMID: 28884358]
  8. Biochim Biophys Acta. 2012 Feb;1819(2):137-48 [PMID: 21605713]
  9. J Exp Bot. 2018 Apr 9;69(8):2023-2036 [PMID: 29390146]
  10. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  11. Plants (Basel). 2023 Nov 23;12(23): [PMID: 38068588]
  12. Cells. 2019 Aug 03;8(8): [PMID: 31382588]
  13. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  14. Front Plant Sci. 2021 Aug 30;12:729560 [PMID: 34527014]
  15. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  16. Front Plant Sci. 2018 Sep 28;9:1427 [PMID: 30323825]
  17. Gene. 2020 Feb 20;728:144288 [PMID: 31846710]
  18. Front Microbiol. 2020 Jun 23;11:1094 [PMID: 32655510]
  19. Plant Cell Rep. 2015 Dec;34(12):2013-25 [PMID: 26242449]
  20. Plant J. 2014 Sep;79(6):928-40 [PMID: 24944042]
  21. Gene. 2017 Jul 20;621:32-39 [PMID: 28411083]
  22. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  23. Bioinformatics. 2019 Jul 15;35(14):2521-2522 [PMID: 30521000]
  24. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W22-8 [PMID: 22693224]
  25. BMC Plant Biol. 2020 Jun 3;20(1):256 [PMID: 32493221]
  26. Mol Plant Pathol. 2015 May;16(4):413-34 [PMID: 25178392]
  27. Environ Microbiol. 2019 Dec;21(12):4537-4547 [PMID: 31314944]
  28. Mol Genet Genomics. 2023 Jan;298(1):273-292 [PMID: 36418510]
  29. Nucleic Acids Res. 2018 Jul 2;46(W1):W49-W54 [PMID: 29718424]
  30. Phytopathology. 2023 Mar;113(3):497-507 [PMID: 36346372]
  31. J Plant Physiol. 2021 Aug;263:153451 [PMID: 34119743]
  32. Proc Biol Sci. 2018 Feb 28;285(1873): [PMID: 29491170]
  33. Mol Plant Pathol. 2012 May;13(4):329-37 [PMID: 22013895]
  34. Sci Data. 2020 Jan 28;7(1):35 [PMID: 31992717]
  35. Plant Physiol. 2020 Apr;182(4):2182-2198 [PMID: 32041907]
  36. Planta. 2015 Jun;241(6):1405-16 [PMID: 25697288]
  37. Front Plant Sci. 2018 May 15;9:628 [PMID: 29868083]
  38. Annu Rev Phytopathol. 2023 Sep 5;61:185-208 [PMID: 37257056]
  39. Int J Mol Sci. 2021 Mar 13;22(6): [PMID: 33805611]
  40. Hortic Res. 2018 Mar 1;5:9 [PMID: 29507733]
  41. Nat Immunol. 2021 Oct;22(10):1245-1255 [PMID: 34556884]

Grants

  1. 31601761, 32302526/National Natural Science Foundation of China
  2. 2208085MC64/Natural Science Foundation of Anhui Province, China
  3. 2022AH010012/Outstanding Innovative Research Team for Molecular Enzymology and Detection in Anhui Pro-vincial Universities
  4. swzy202007/Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources in Anhui Normal University

Word Cloud

Created with Highcharts 10.0.0miRNAspepperCM334EC01miRNArespectivelyanalysisgenesidentifiedDEMstargetsregulatorynetworksPhytophthoradiseasesmallmRNA-seqlibrarieslinedifferentiallyexpressednoveltargetpepper'sdefenseblightnotoriouscausedoomycetepathogenposesgreatthreatglobalproductionMicroRNAclassnon-codingRNAsregulategeneexpressionsalteringtranslationefficiencystabilitytargetedmRNAsplayimportantrolesregulationplant'sresponsepathogensHereintime-seriesRNA-seqconstructedusingrootsresistantsusceptibleinoculated062448hpost-inoculationtotal21592971DEGsmiRNA-seq491including330known161Among6988Examinationrevealed22predominantlyfeaturingup-regulatedcorrespondingdown-regulatedNotablyDEM-DEGexhibitedsignificantoverlapsuggestingmightcontributebasalFurthermorefiveselectedmiR166miR1171miR395miR530miRN2underwentqRT-PCRvalidationconfirmingconsistentnegativecorrelationexpressionpatternscomprehensiveprovidesinsightsofferingvaluablecontributionsunderstandingmechanismsIntegrativeTranscriptomeAnalysismRNAPepper'sResponseInfectionCapsicumannuumcapsiciresistancetranscriptome

Similar Articles

Cited By (1)