Antifungal and Coagulation Properties of a Copper (I) Oxide Nanopowder Produced by Out-of-Phase Pulsed Sonoelectrochemistry.

Valérie Mancier, Sirine Fattoum, Hélène Haguet, Julie Laloy, Christina Maillet, Sophie C Gangloff, Jean-Paul Chopart
Author Information
  1. Valérie Mancier: Université de Reims Champagne-Ardenne (URCA), Institut de Thermique, Mécanique et Matériaux (ITheMM, UR 7548), BP 1039, 51687 Reims, France. ORCID
  2. Sirine Fattoum: Université de Reims Champagne-Ardenne (URCA), Institut de Thermique, Mécanique et Matériaux (ITheMM, UR 7548), BP 1039, 51687 Reims, France.
  3. Hélène Haguet: Département de Pharmacie, University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium. ORCID
  4. Julie Laloy: Département de Pharmacie, University of Namur (UNamur), Rue de Bruxelles 61, 5000 Namur, Belgium.
  5. Christina Maillet: Université de Reims Champagne-Ardenne (URCA), Biomatériaux et Inflammation en Site Osseux (BIOS), 51097 Reims, France.
  6. Sophie C Gangloff: Université de Reims Champagne-Ardenne (URCA), Biomatériaux et Inflammation en Site Osseux (BIOS), 51097 Reims, France. ORCID
  7. Jean-Paul Chopart: Université de Reims Champagne-Ardenne (URCA), MATériaux et Ingénierie Mécanique (MATIM, UR 3689), BP 1039, 51687 Reims, France. ORCID

Abstract

Copper (I) oxide (cuprite) is a material widely used nowadays, and its versatility is further amplified when it is brought to the nanometric size. Among the possible applications of this nanomaterial, one of the most interesting is that in the medical field. This paper presents a cuprite nanopowder study with the aim of employing it in medical applications. With regards to the environmental context, the synthesis used is related to green chemistry since the technique (out-of-phase pulsed electrochemistry) uses few chemical products via electricity consumption and soft conditions of temperature and pressure. After different physico-chemical characterizations, the nanopowder was tested on the to determine its fungicide activity and on human blood to estimate its hemocompatibility. The results show that 2 mg of this nanopowder diluted in 30 µL Sabouraud broth was able to react with . The hemocompatibility tests indicate that for 25 to 100 µg/mL of nanopowder in an aqueous medium, the powder was not toxic for human blood (no hemolysis nor platelet aggregation) but promoted blood coagulation. It appears, therefore, as a potential candidate for the functionalization of matrices for medical applications (wound dressing or operating field, for example).

Keywords

References

  1. Nanomaterials (Basel). 2022 Nov 01;12(21): [PMID: 36364632]
  2. J Fungi (Basel). 2017 Jun 22;3(3): [PMID: 29371549]
  3. Toxicology. 2022 May 30;474:153221 [PMID: 35659515]
  4. Micromachines (Basel). 2022 Nov 27;13(12): [PMID: 36557391]
  5. Front Cardiovasc Med. 2019 Sep 18;6:139 [PMID: 31620449]
  6. Cells. 2019 Oct 07;8(10): [PMID: 31591302]
  7. Cell Mol Biol (Noisy-le-grand). 2021 Nov 25;67(3):24-34 [PMID: 34933736]
  8. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Sep;9(5): [PMID: 28078811]
  9. Adv Colloid Interface Sci. 2022 Feb;300:102597 [PMID: 34979471]
  10. Biomed Mater. 2014 Aug;9(4):045008 [PMID: 25029588]
  11. J Immunotoxicol. 2018 Dec;15(1):12-23 [PMID: 29237319]
  12. Nanoscale Res Lett. 2016 Dec;11(1):57 [PMID: 26831695]
  13. Naunyn Schmiedebergs Arch Pharmacol. 2021 Jul;394(7):1355-1382 [PMID: 33710422]
  14. Environ Res. 2022 Mar;204(Pt A):111897 [PMID: 34418450]
  15. Int J Mol Sci. 2023 Jun 02;24(11): [PMID: 37298626]
  16. Part Fibre Toxicol. 2019 Apr 11;16(1):16 [PMID: 30975181]
  17. Biofouling. 2020 Jan;36(1):56-72 [PMID: 31997658]
  18. ACS Biomater Sci Eng. 2022 Mar 14;8(3):1200-1214 [PMID: 35226460]
  19. Nanomaterials (Basel). 2022 Feb 12;12(4): [PMID: 35214947]
  20. Thromb Haemost. 1978 Aug 31;40(1):11-23 [PMID: 725840]
  21. Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109968 [PMID: 31500003]
  22. Pharmaceutics. 2020 May 30;12(6): [PMID: 32486142]
  23. Acta Biomater. 2013 Jul;9(7):7460-8 [PMID: 23523936]
  24. Ultrason Sonochem. 2008 Mar;15(3):157-63 [PMID: 17462940]
  25. Toxicology. 2013 Nov 8;313(1):59-69 [PMID: 23891735]
  26. ACS Appl Bio Mater. 2018 Nov 19;1(5):1620-1627 [PMID: 34046558]
  27. RSC Adv. 2018 Nov 12;8(66):37789-37794 [PMID: 30713685]
  28. Nanoscale Res Lett. 2014 May 23;9(1):257 [PMID: 25114629]
  29. Biol Trace Elem Res. 2023 Jan;201(1):149-155 [PMID: 35378668]
  30. Nature. 2016 Apr 7;532(7597):64-8 [PMID: 27027296]
  31. Nanotoxicology. 2019 Aug;13(6):795-811 [PMID: 30938207]

Grants

  1. SONAME/University of Reims Champagne-Ardenne

Word Cloud

Created with Highcharts 10.0.0nanopowdercupriteapplicationsmedicalbloodCopperoxideusedfieldhumanhemocompatibilityplateletmaterialwidelynowadaysversatilityamplifiedbroughtnanometricsizeAmongpossiblenanomaterialoneinterestingpaperpresentsstudyaimemployingregardsenvironmentalcontextsynthesisrelatedgreenchemistrysincetechniqueout-of-phasepulsedelectrochemistryuseschemicalproductsviaelectricityconsumptionsoftconditionstemperaturepressuredifferentphysico-chemicalcharacterizationstesteddeterminefungicideactivityestimateresultsshow2mgdiluted30µLSabouraudbrothablereacttestsindicate25100µg/mLaqueousmediumpowdertoxichemolysisaggregationpromotedcoagulationappearsthereforepotentialcandidatefunctionalizationmatriceswounddressingoperatingexampleAntifungalCoagulationPropertiesOxideNanopowderProducedOut-of-PhasePulsedSonoelectrochemistryCandidaalbicansantifungalmaterialscopperhemostasisnanoparticlessonoelectrochemistry

Similar Articles

Cited By