as a Model for the Study of Fungal Pathogens: Advantages and Disadvantages.

Andrea Giammarino, Nicol�� Bellucci, Letizia Angiolella
Author Information
  1. Andrea Giammarino: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Rome, Italy. ORCID
  2. Nicol�� Bellucci: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Rome, Italy. ORCID
  3. Letizia Angiolella: Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Rome, Italy. ORCID

Abstract

The study of pathogenicity and virulence of fungal strains, in vivo in the preclinical phase, is carried out through the use of animal models belonging to various classes of mammals (rodents, leproids, etc.). Although animals are functionally more similar to humans, these studies have some limitations in terms of ethics (animal suffering), user-friendliness, cost-effectiveness, timing (physiological response time) and logistics (need for adequately equipped laboratories). A good in vivo model must possess some optimal characteristics to be used, such as rapid growth, small size and short life cycle. For this reason, insects, such as (Lepidoptera), (Diptera) and (Lepidoptera), have been widely used as alternative non-mammalian models. Due to their simplicity of use and low cost, the larvae of represent an optimal model above all to evaluate the virulence of fungal pathogens and the use of antifungal treatments (either single or in combination with biologically active compounds). A further advantage is also represented by their simple neuronal system limiting the suffering of the animal itself, their ability to survive at near-body ambient temperatures as well as the expression of proteins able to recognise combined pathogens following the three R principles (replacement, refinement and reduction). This review aims to assess the validity as well as the advantages and disadvantages of replacing mammalian classes with as an in vivo study model for preclinical experimentation.

Keywords

References

  1. Virulence. 2023 Dec;14(1):2190645 [PMID: 36914568]
  2. J Fungi (Basel). 2023 Aug 18;9(8): [PMID: 37623630]
  3. Arch Insect Biochem Physiol. 2014 Sep;87(1):1-12 [PMID: 25044335]
  4. J Antimicrob Chemother. 2023 Jun 1;78(6):1488-1494 [PMID: 37100456]
  5. Photodiagnosis Photodyn Ther. 2019 Mar;25:197-203 [PMID: 30586617]
  6. J Fungi (Basel). 2018 Sep 06;4(3): [PMID: 30200639]
  7. J Orthop Res. 2023 Nov;41(11):2547-2559 [PMID: 37080929]
  8. Infect Drug Resist. 2023 Nov 09;16:7187-7195 [PMID: 37965207]
  9. mBio. 2023 Aug 31;14(4):e0047923 [PMID: 37326546]
  10. Biofouling. 2019 Oct;35(9):997-1006 [PMID: 31710252]
  11. Neurotoxicol Teratol. 2008 Sep-Oct;30(5):440-7 [PMID: 18508234]
  12. J Cell Sci. 1996 Aug;109 ( Pt 8):2053-60 [PMID: 8856501]
  13. J Fungi (Basel). 2023 Sep 29;9(10): [PMID: 37888236]
  14. Front Cell Infect Microbiol. 2021 Dec 22;11:782733 [PMID: 35004350]
  15. Pathogens. 2020 Sep 05;9(9): [PMID: 32899539]
  16. Pathog Dis. 2020 Nov 11;78(8): [PMID: 32960263]
  17. J Immunol Methods. 2014 Aug;410:100-12 [PMID: 24709390]
  18. Virulence. 2015;6(6):591-8 [PMID: 26107350]
  19. Antimicrob Agents Chemother. 2023 Mar 16;67(3):e0075922 [PMID: 36815840]
  20. Int J Mol Sci. 2020 Mar 11;21(6): [PMID: 32168818]
  21. J Fungi (Basel). 2023 Mar 15;9(3): [PMID: 36983523]
  22. Virulence. 2021 Dec;12(1):818-834 [PMID: 33682618]
  23. Chem Biodivers. 2023 May;20(5):e202300151 [PMID: 37067830]
  24. Clin Microbiol Rev. 2007 Jan;20(1):133-63 [PMID: 17223626]
  25. Antimicrob Agents Chemother. 2020 Jul 22;64(8): [PMID: 32482674]
  26. Appl Environ Microbiol. 2023 Jun 28;89(6):e0041523 [PMID: 37212708]
  27. Peptides. 2007 Mar;28(3):533-46 [PMID: 17194500]
  28. Peptides. 2014 Mar;53:194-201 [PMID: 24472857]
  29. Adv Exp Med Biol. 2017;1014:155-173 [PMID: 28864990]
  30. Antibiotics (Basel). 2023 Mar 03;12(3): [PMID: 36978373]
  31. Fungal Genet Biol. 2011 Dec;48(12):1124-9 [PMID: 21907298]
  32. Pharmaceuticals (Basel). 2010 Mar 18;3(3):725-747 [PMID: 27713276]
  33. Pathogens. 2021 Apr 12;10(4): [PMID: 33921490]
  34. Front Cell Infect Microbiol. 2020 May 05;10:199 [PMID: 32432057]
  35. J Fungi (Basel). 2018 Sep 19;4(3): [PMID: 30235800]
  36. Arch Microbiol. 2022 Dec 7;205(1):15 [PMID: 36477374]
  37. Virulence. 2018 Jan 1;9(1):383-389 [PMID: 29130369]
  38. Nutr Rev. 1996 Jul;54(7):203-7 [PMID: 8918140]
  39. Tissue Cell. 2016 Aug;48(4):297-304 [PMID: 27378036]
  40. Biochim Biophys Acta. 2013 Sep;1832(9):1378-83 [PMID: 23517918]
  41. Bioorg Chem. 2023 Sep;138:106679 [PMID: 37329812]
  42. Biochem Biophys Res Commun. 1999 Oct 14;264(1):212-5 [PMID: 10527867]
  43. Genetics. 2015 Mar;199(3):639-53 [PMID: 25624315]
  44. Cell Microbiol. 2020 Oct;22(10):e13238 [PMID: 32558196]
  45. Folia Microbiol (Praha). 2023 Aug;68(4):595-605 [PMID: 36753031]
  46. Int J Mol Sci. 2021 Oct 09;22(20): [PMID: 34681564]
  47. Pathog Dis. 2020 Nov 23;78(9): [PMID: 33098293]
  48. FEMS Microbiol Rev. 2004 Feb;28(1):101-12 [PMID: 14975532]
  49. Insects. 2017 Jun 09;8(2): [PMID: 28598383]
  50. Immunol Lett. 1998 Jun;62(2):59-66 [PMID: 9698099]
  51. Braz J Microbiol. 2020 Mar;51(1):5-14 [PMID: 31486049]
  52. PLoS One. 2009;4(1):e4224 [PMID: 19156203]
  53. Med Mycol. 2023 Feb 3;61(2): [PMID: 36427066]
  54. Pathogens. 2023 May 24;12(6): [PMID: 37375448]
  55. Front Microbiol. 2017 Mar 07;8:373 [PMID: 28326075]
  56. Front Cell Infect Microbiol. 2023 Jan 17;12:1038342 [PMID: 36733850]
  57. Genetics. 2015 Oct;201(2):377-402 [PMID: 26447127]
  58. Arthropod Struct Dev. 2004 Jul;33(3):187-99 [PMID: 18089034]
  59. J Parasitol. 1998 Dec;84(6):1150-7 [PMID: 9920305]
  60. Virulence. 2016 Apr 2;7(3):214-29 [PMID: 26730990]
  61. Acta Microbiol Immunol Hung. 2019 Mar 1;66(1):31-55 [PMID: 30816806]
  62. Zoology (Jena). 2016 Aug;119(4):350-8 [PMID: 27448694]
  63. Virulence. 2023 Dec;14(1):2230009 [PMID: 37367101]
  64. Methods Mol Biol. 2023;2667:15-29 [PMID: 37145273]
  65. Mycopathologia. 2015 Oct;180(3-4):159-64 [PMID: 26003722]
  66. Future Microbiol. 2018 Jul;13:1021-1028 [PMID: 29927339]
  67. Microbiol Spectr. 2023 Aug 17;11(4):e0082523 [PMID: 37466453]
  68. Virulence. 2013 Oct 1;4(7):597-603 [PMID: 23921374]
  69. Dis Model Mech. 2016 Mar;9(3):235-44 [PMID: 26935102]
  70. J Fungi (Basel). 2023 Jul 21;9(7): [PMID: 37504760]
  71. J Vis Exp. 2018 Nov 17;(141): [PMID: 30507902]
  72. Microbiol Spectr. 2021 Sep 3;9(1):e0001321 [PMID: 34106570]
  73. Med Mycol. 2018 Apr 1;56(3):374-377 [PMID: 28637229]
  74. Microorganisms. 2020 Mar 11;8(3): [PMID: 32168839]
  75. Microbiol Spectr. 2023 Jun 15;11(3):e0039323 [PMID: 37098889]
  76. Virulence. 2023 Dec;14(1):2150455 [PMID: 36599817]
  77. Cell. 2015 Sep 24;163(1):12-4 [PMID: 26406362]
  78. Sci Total Environ. 2022 Feb 10;807(Pt 3):151023 [PMID: 34662607]
  79. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  80. J Comp Neurol. 2020 Jul 15;528(11):1942-1963 [PMID: 31994724]
  81. mBio. 2023 Aug 31;14(4):e0107323 [PMID: 37530533]
  82. Genome Announc. 2018 Jan 11;6(2): [PMID: 29326202]
  83. Virulence. 2019 Dec;10(1):527-541 [PMID: 31142220]
  84. Virulence. 2019 Dec;10(1):542-554 [PMID: 31169442]
  85. Photodiagnosis Photodyn Ther. 2019 Sep;27:66-73 [PMID: 31100446]
  86. J Insect Physiol. 2007 Sep;53(9):909-22 [PMID: 17512001]
  87. Sci Rep. 2019 Aug 29;9(1):12555 [PMID: 31467372]
  88. Med Mycol. 2023 Aug 2;61(8): [PMID: 37451815]
  89. Curr Top Dev Biol. 2017;121:287-309 [PMID: 28057303]
  90. J Fungi (Basel). 2018 Dec 26;5(1): [PMID: 30587801]
  91. Cells. 2023 Mar 31;12(7): [PMID: 37048138]
  92. Trends Immunol. 2001 Jun;22(6):285-8 [PMID: 11377277]
  93. Microbiol Spectr. 2023 Jun 15;11(3):e0006623 [PMID: 37154762]
  94. Infect Immun. 2005 Jul;73(7):3842-50 [PMID: 15972469]
  95. J Insect Physiol. 2009 Sep;55(9):781-7 [PMID: 19414015]
  96. J Fungi (Basel). 2018 Nov 27;4(4): [PMID: 30486393]
  97. Med Mycol. 2019 Apr 1;57(3):351-362 [PMID: 29924357]
  98. Front Fungal Biol. 2022 Apr 26;3:893494 [PMID: 37746216]
  99. J Immunol. 2004 Feb 15;172(4):2177-85 [PMID: 14764684]

MeSH Term

Animals
Disease Models, Animal
Moths
Fungi
Larva
Mycoses
Virulence
Humans

Word Cloud

Created with Highcharts 10.0.0virulencevivouseanimalmodelstudyfungalpreclinicalmodelsclassessufferingoptimalusedLepidopterapathogenswellspppathogenicitystrainsphasecarriedbelongingvariousmammalsrodentsleproidsetcAlthoughanimalsfunctionallysimilarhumansstudieslimitationstermsethicsuser-friendlinesscost-effectivenesstimingphysiologicalresponsetimelogisticsneedadequatelyequippedlaboratoriesgoodmustpossesscharacteristicsrapidgrowthsmallsizeshortlifecyclereasoninsectsDipterawidelyalternativenon-mammalianDuesimplicitylowcostlarvaerepresentevaluateantifungaltreatmentseithersinglecombinationbiologicallyactivecompoundsadvantagealsorepresentedsimpleneuronalsystemlimitingabilitysurvivenear-bodyambienttemperaturesexpressionproteinsablerecognisecombinedfollowingthreeRprinciplesreplacementrefinementreductionreviewaimsassessvalidityadvantagesdisadvantagesreplacingmammalianexperimentationModelStudyFungalPathogens:AdvantagesDisadvantagesAspergillusCandidaGalleriamellonellafungifactors

Similar Articles

Cited By