Cationicity Enhancement on the Hydrophilic Face of Ctriporin Significantly Reduces Its Hemolytic Activity and Improves the Antimicrobial Activity against Antibiotic-Resistant ESKAPE Pathogens.

Xudong Luo, Huan Deng, Li Ding, Xiangdong Ye, Fang Sun, Chenhu Qin, Zongyun Chen
Author Information
  1. Xudong Luo: Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China. ORCID
  2. Huan Deng: Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.
  3. Li Ding: Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China.
  4. Xiangdong Ye: Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China. ORCID
  5. Fang Sun: Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.
  6. Chenhu Qin: Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.
  7. Zongyun Chen: Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China.

Abstract

The ESKAPE pathogen-associated antimicrobial resistance is a global public health issue, and novel therapeutic strategies are urgently needed. The short cationic antimicrobial peptide (AMP) family represents an important subfamily of scorpion-derived AMPs, but high hemolysis and poor antimicrobial activity hinder their therapeutic application. Here, we recomposed the hydrophilic face of Ctriporin through lysine substitution. We observed non-linear correlations between the physiochemical properties of the peptides and their activities, and significant deviations regarding the changes of antimicrobial activities against different bacterial species, as well as hemolytic activity. Most importantly, we obtained two Ctriporin analogs, CM5 and CM6, these two have significantly reduced hemolytic activity and more potent antimicrobial activities against all tested antibiotic-resistant ESKAPE pathogens. Fluorescence experiments indicated they may perform the bactericidal function through a membrane-lytic action model. Our work sheds light on the potential of CM5 and CM6 in developing novel antimicrobials and gives clues for optimizing peptides from the short cationic AMP family.

Keywords

References

  1. Biochimie. 2013 Sep;95(9):1784-94 [PMID: 23770440]
  2. PLoS One. 2012;7(7):e40135 [PMID: 22792229]
  3. Eur J Med Chem. 2017 Jan 27;126:456-463 [PMID: 27912176]
  4. Trends Microbiol. 2019 Apr;27(4):323-338 [PMID: 30683453]
  5. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160593]
  6. Toxicon. 2018 Sep 15;152:9-15 [PMID: 30012473]
  7. Toxicon. 2010 Dec 15;56(7):1155-61 [PMID: 19931296]
  8. Curr Top Med Chem. 2016;16(1):25-39 [PMID: 26139112]
  9. ACS Infect Dis. 2021 Sep 10;7(9):2736-2745 [PMID: 34463484]
  10. Toxicon. 2014 Sep;88:115-37 [PMID: 24951876]
  11. Antimicrob Agents Chemother. 2011 Nov;55(11):5220-9 [PMID: 21876042]
  12. Toxicon. 2021 Jun;196:63-73 [PMID: 33836178]
  13. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  14. Front Pharmacol. 2019 Nov 29;10:1415 [PMID: 31849667]
  15. Antimicrob Agents Chemother. 2009 Aug;53(8):3472-7 [PMID: 19451300]
  16. Peptides. 2013 Jul;45:28-34 [PMID: 23624072]
  17. Bioinformatics. 2008 Sep 15;24(18):2101-2 [PMID: 18662927]
  18. Front Microbiol. 2021 Jul 15;12:684591 [PMID: 34335511]
  19. Microb Pathog. 2021 Aug;157:104960 [PMID: 34022355]
  20. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  21. Clin Microbiol Rev. 2020 May 13;33(3): [PMID: 32404435]
  22. Antibiotics (Basel). 2019 Nov 27;8(4): [PMID: 31783657]
  23. Front Microbiol. 2018 May 29;9:1159 [PMID: 29896190]
  24. Peptides. 2012 Jun;35(2):291-9 [PMID: 22484288]
  25. Microbiol Immunol. 2015 May;59(5):277-84 [PMID: 25726848]
  26. Peptides. 2012 Aug;36(2):213-20 [PMID: 22542475]
  27. Peptides. 2005 Dec;26(12):2427-33 [PMID: 16040157]
  28. Clin Infect Dis. 2018 Nov 13;67(suppl_2):S128-S134 [PMID: 30423045]
  29. Phys Eng Sci Med. 2023 Dec;46(4):1387-1397 [PMID: 37733264]
  30. Appl Microbiol Biotechnol. 2016 Jun;100(11):5069-77 [PMID: 26952110]
  31. Toxins (Basel). 2018 Aug 07;10(8): [PMID: 30087268]
  32. Antimicrob Agents Chemother. 2008 Nov;52(11):3967-72 [PMID: 18779362]
  33. J Pept Sci. 2019 Dec;25(12):e3219 [PMID: 31642159]
  34. Nat Biotechnol. 2019 Oct;37(10):1186-1197 [PMID: 31427820]
  35. Amino Acids. 2011 Jan;40(1):61-8 [PMID: 20033827]
  36. Expert Rev Anti Infect Ther. 2013 Mar;11(3):297-308 [PMID: 23458769]
  37. Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13517-13522 [PMID: 31209048]
  38. J Biol Chem. 2012 Mar 2;287(10):7738-45 [PMID: 22253439]
  39. Toxicon. 2015 Jan;93:125-35 [PMID: 25432067]
  40. Peptides. 2015 Jun;68:3-10 [PMID: 25805002]
  41. Nature. 2017 Feb 28;543(7643):15 [PMID: 28252092]
  42. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  43. J Med Chem. 2019 Jul 11;62(13):6276-6286 [PMID: 31194548]
  44. Biochem Pharmacol. 2020 Feb;172:113746 [PMID: 31812678]
  45. ISA Trans. 2020 Aug;103:143-155 [PMID: 32171594]
  46. Front Biosci (Landmark Ed). 2016 Jun 01;21(7):1341-71 [PMID: 27100511]
  47. PLoS One. 2014 May 14;9(5):e97539 [PMID: 24826994]
  48. Toxins (Basel). 2022 Oct 28;14(11): [PMID: 36355990]
  49. J Mol Biol. 2019 Aug 23;431(18):3547-3567 [PMID: 30611750]
  50. Biopolymers. 2008;90(3):369-83 [PMID: 18098173]
  51. Int J Mol Sci. 2023 Mar 12;24(6): [PMID: 36982501]
  52. Antibiotics (Basel). 2020 Sep 19;9(9): [PMID: 32961656]
  53. Eur J Med Chem. 2021 Jul 5;219:113433 [PMID: 33878564]
  54. J Colloid Interface Sci. 2019 Mar 1;537:163-185 [PMID: 30439615]

Grants

  1. 2021CFB130/the Natural Science Foundation of Hubei Province
  2. 2017QDJZR14/the School Natural Science Fund of Hubei University of Medicine
  3. FDFR201906/the School Natural Science Fund of Hubei University of Medicine
  4. 81973321/the National Natural Sciences Foundation of China

MeSH Term

Humans
Anti-Bacterial Agents
Hemolysis
Antimicrobial Cationic Peptides
Cations
Cell Death

Chemicals

Anti-Bacterial Agents
Antimicrobial Cationic Peptides
Cations

Word Cloud

Created with Highcharts 10.0.0antimicrobialESKAPEactivityCtriporinshortcationicpeptidefamilyactivitieshemolyticnoveltherapeuticAMPpeptidestwoCM5CM6Activitypathogen-associatedresistanceglobalpublichealthissuestrategiesurgentlyneededrepresentsimportantsubfamilyscorpion-derivedAMPshighhemolysispoorhinderapplicationrecomposedhydrophilicfacelysinesubstitutionobservednon-linearcorrelationsphysiochemicalpropertiessignificantdeviationsregardingchangesdifferentbacterialspecieswellimportantlyobtainedanalogssignificantlyreducedpotenttestedantibiotic-resistantpathogensFluorescenceexperimentsindicatedmayperformbactericidalfunctionmembrane-lyticactionmodelworkshedslightpotentialdevelopingantimicrobialsgivescluesoptimizingCationicityEnhancementHydrophilicFaceSignificantlyReducesHemolyticImprovesAntimicrobialAntibiotic-ResistantPathogensmultidrug-resistantdesignscorpionvenom

Similar Articles

Cited By