Folate induces stemness and increases oxygen consumption under glucose deprivation by notch-1 pathway activation in colorectal cancer cell.

Juan Rodríguez Silva, Matías Monsalves-Álvarez, Carlos Sepúlveda, Camila Donoso-Barraza, Rodrigo Troncoso, Sandra Hirsch
Author Information
  1. Juan Rodríguez Silva: Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile. juan.rodriguez@inta.uchile.cl.
  2. Matías Monsalves-Álvarez: Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile.
  3. Carlos Sepúlveda: Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
  4. Camila Donoso-Barraza: Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
  5. Rodrigo Troncoso: Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile.
  6. Sandra Hirsch: Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile. shirsch@inta.uchile.cl.

Abstract

Evidence for folate's protective effects on neural tube defects led the USA and Chile to start mandatory folic acid (FA) fortification programs, decreasing up to 50%. However, ∼30% of the population consuming fortified foods reach supraphysiologic serum levels. Although controversial, several epidemiological and clinical observations suggest that folate increases cancer risk, giving concern about the risks of FA supplementation. The Cancer stem cells (CSCs) model has been used to explain survival to anticancer therapies. The Notch-1 pathway plays a role in several cancers and is associated with the stemness process. Different studies show that modulation of metabolic pathways regulates stemness capacity in cancer. Supraphysiologic concentrations of FA increase the proliferation of HT-29 cells by Notch-1 activation. However, whether folate can induce a stemness-like phenotype in cancer is not known. We hypothesized that FA protects from glucose deprivation-induced cell death through Notch-1 activation. HT-29 cells were challenged with glucose deprivation at basal (20 nM) and supraphysiological (400 nM) FA and 5-MTHF concentrations. We analyzed changes in stemness-like gene expression, cell death and different energetic metabolic functions. Supraphysiological concentrations of FA increased stemness-like genes, and improved survival and oxygen consumption, inducing AMPK phosphorylation and HSP-70 protein expression. We evaluated the Notch-1 pathway using the DAPT and siRNA as inhibitors, decreasing the stemness-like gene expression and preventing the FA protection against glucose deprivation-induced cell death. Moreover, they decreased oxygen consumption and AMPK phosphorylation. These results suggest that FA protects against glucose deprivation. These effects were associated with AMPK activation, a critical metabolic mediator in nutrient consumption and availability that activates the Notch-1 pathway.

Keywords

References

  1. Kim Y-I (2016) Current status of folic acid supplementation on Colorectal Cancer Prevention. Curr Pharmacol Rep 2:21–33. https://doi.org/10.1007/s40495-016-0046-1 [DOI: 10.1007/s40495-016-0046-1]
  2. Sharma J, Krupenko SA (2020) Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 324:109091. https://doi.org/10.1016/j.cbi.2020.109091 [DOI: 10.1016/j.cbi.2020.109091]
  3. Ashkavand Z, O’Flanagan C, Hennig M et al (2017) Metabolic reprogramming by Folate Restriction leads to a less aggressive Cancer phenotype. Mol Cancer Res 15:189–200. https://doi.org/10.1158/1541-7786.MCR-16-0317 [DOI: 10.1158/1541-7786.MCR-16-0317]
  4. Crider KS, Bailey LB, Berry RJ (2011) Folic acid food fortification—its history, effect, concerns, and future directions. Nutrients 3:370–384. https://doi.org/10.3390/nu3030370 [DOI: 10.3390/nu3030370]
  5. Hirsch S, de la Maza P, Barrera G et al (2002) The Chilean flour folic acid fortification program reduces serum homocysteine levels and masks vitamin B-12 deficiency in elderly people. J Nutr 132:289–291. https://doi.org/10.1093/jn/132.2.289 [DOI: 10.1093/jn/132.2.289]
  6. Pfeiffer CM, Caudill SP, Gunter EW et al (2005) Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82:442–450. https://doi.org/10.1093/ajcn.82.2.442 [DOI: 10.1093/ajcn.82.2.442]
  7. Zhou Y-H, Tang J-Y, Wu M-J et al (2011) Effect of Folic Acid Supplementation on Cardiovascular outcomes: a systematic review and Meta-analysis. PLoS ONE 6:e25142. https://doi.org/10.1371/journal.pone.0025142 [DOI: 10.1371/journal.pone.0025142]
  8. Patel KR, Sobczyńska-Malefora A (2017) The adverse effects of an excessive folic acid intake. Eur J Clin Nutr 71:159–163. https://doi.org/10.1038/ejcn.2016.194 [DOI: 10.1038/ejcn.2016.194]
  9. Saini RK, Nile SH, Keum Y-S (2016) Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res Int 89:1–13. https://doi.org/10.1016/j.foodres.2016.07.013 [DOI: 10.1016/j.foodres.2016.07.013]
  10. Scaglione F, Panzavolta G (2014) Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica 44:480–488. https://doi.org/10.3109/00498254.2013.845705 [DOI: 10.3109/00498254.2013.845705]
  11. Malki A, ElRuz RA, Gupta I et al (2020) Molecular mechanisms of Colon cancer progression and metastasis: recent insights and advancements. Int J Mol Sci 22:E130. https://doi.org/10.3390/ijms22010130 [DOI: 10.3390/ijms22010130]
  12. Dekker E, Tanis PJ, Vleugels JLA et al (2019) Colorectal cancer. Lancet 394:1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0 [DOI: 10.1016/S0140-6736(19)32319-0]
  13. Fardous AM, Beydoun S, James AA et al (2021) The timing and duration of Folate Restriction differentially impacts Colon carcinogenesis. Nutrients 14:16. https://doi.org/10.3390/nu14010016 [DOI: 10.3390/nu14010016]
  14. Sanjoaquin MA, Allen N, Couto E et al (2005) Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer 113:825–828. https://doi.org/10.1002/ijc.20648 [DOI: 10.1002/ijc.20648]
  15. Giovannucci E (2002) Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr 132. https://doi.org/10.1093/jn/132.8.2350S . :2350S-2355S
  16. Baggott JE, Oster RA, Tamura T (2012) Meta-analysis of cancer risk in folic acid supplementation trials. Cancer Epidemiol 36:78–81. https://doi.org/10.1016/j.canep.2011.05.003 [DOI: 10.1016/j.canep.2011.05.003]
  17. Cole BF, Baron JA, Sandler RS et al (2007) Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA 297:2351–2359. https://doi.org/10.1001/jama.297.21.2351 [DOI: 10.1001/jama.297.21.2351]
  18. Hirsch S, Sanchez H, Albala C et al (2009) Colon cancer in Chile before and after the start of the flour fortification program with folic acid. Eur J Gastroenterol Hepatol 21:436–439. https://doi.org/10.1097/MEG.0b013e328306ccdb [DOI: 10.1097/MEG.0b013e328306ccdb]
  19. Pan Y, Ma S, Cao K et al (2018) Therapeutic approaches targeting cancer stem cells. J Cancer Res Ther 14:1469–1475. https://doi.org/10.4103/jcrt.JCRT_976_17 [DOI: 10.4103/jcrt.JCRT_976_17]
  20. Walcher L, Kistenmacher A-K, Suo H et al (2020) Cancer Stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280. https://doi.org/10.3389/fimmu.2020.01280 [DOI: 10.3389/fimmu.2020.01280]
  21. Bayik D, Lathia JD (2021) Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer 21:526–536. https://doi.org/10.1038/s41568-021-00366-w [DOI: 10.1038/s41568-021-00366-w]
  22. Kuşoğlu A, Biray Avcı Ç (2019) Cancer stem cells: a brief review of the current status. Gene 681:80–85. https://doi.org/10.1016/j.gene.2018.09.052 [DOI: 10.1016/j.gene.2018.09.052]
  23. Wen Y, Hou Y, Yi X et al (2021) EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics 11:1795–1813. https://doi.org/10.7150/thno.48101 [DOI: 10.7150/thno.48101]
  24. Baisiwala S, Hall RR, Saathoff MR et al (2020) LNX1 modulates Notch1 signaling to promote expansion of the Glioma Stem Cell Population during Temozolomide Therapy in Glioblastoma. Cancers (Basel) 12:E3505. https://doi.org/10.3390/cancers12123505 [DOI: 10.3390/cancers12123505]
  25. Aguilar-Gallardo C, Simón C (2013) Cells, stem cells, and cancer stem cells. Semin Reprod Med 31:5–13. https://doi.org/10.1055/s-0032-1331792 [DOI: 10.1055/s-0032-1331792]
  26. Colak S, Zimberlin CD, Fessler E et al (2014) Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ 21:1170–1177. https://doi.org/10.1038/cdd.2014.37 [DOI: 10.1038/cdd.2014.37]
  27. Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402. https://doi.org/10.1016/j.stem.2007.08.001 [DOI: 10.1016/j.stem.2007.08.001]
  28. Dylla SJ, Beviglia L, Park I-K et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3:e2428. https://doi.org/10.1371/journal.pone.0002428 [DOI: 10.1371/journal.pone.0002428]
  29. Wilson BJ, Schatton T, Zhan Q et al (2011) ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 71:5307–5316. https://doi.org/10.1158/0008-5472.CAN-11-0221 [DOI: 10.1158/0008-5472.CAN-11-0221]
  30. Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123. https://doi.org/10.1016/j.cell.2007.10.054 [DOI: 10.1016/j.cell.2007.10.054]
  31. Tamura K, Aoyagi M, Wakimoto H et al (2010) Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg 113:310–318. https://doi.org/10.3171/2010.2.JNS091607 [DOI: 10.3171/2010.2.JNS091607]
  32. Cheng Q, Zheng H, Li M et al (2022) LGR4 cooperates with PrPc to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis. Cancer Lett 215725. https://doi.org/10.1016/j.canlet.2022.215725
  33. Therachiyil L, Krishnankutty R, Uddin S, Korashy HM (2022) Aryl hydrocarbon receptor (AhR) promotes cell growth, induces Stemness like characteristics and metastasis in ovarian Cancer cells via activation of akt, β-Catenin and EMT. FASEB J. https://doi.org/10.1096/fasebj.2022.36.S1.R5035 . 36 Suppl 1 [DOI: 10.1096/fasebj.2022.36.S1.R5035]
  34. Yan S, Li Q, Li S et al (2022) The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep. https://doi.org/10.1007/s11033-022-07513-y [DOI: 10.1007/s11033-022-07513-y]
  35. Fender AW, Nutter JM, Fitzgerald TL et al (2015) Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J Cell Biochem 116:2517–2527. https://doi.org/10.1002/jcb.25196 [DOI: 10.1002/jcb.25196]
  36. Liang N, Yang T, Huang Q et al (2022) Mechanism of cancer stemness maintenance in human liver cancer. Cell Death Dis 13:394. https://doi.org/10.1038/s41419-022-04848-z [DOI: 10.1038/s41419-022-04848-z]
  37. Vasefifar P, Motafakkerazad R, Maleki LA et al (2022) Nanog, as a key cancer stem cell marker in tumor progression. Gene 827:146448. https://doi.org/10.1016/j.gene.2022.146448 [DOI: 10.1016/j.gene.2022.146448]
  38. Wang S, Jiang J, Liang X, Tang Y (2015) Links between cancer stem cells and epithelial–mesenchymal transition. Onco Targets Ther 8:2973–2980. https://doi.org/10.2147/OTT.S91863 [DOI: 10.2147/OTT.S91863]
  39. Bertrand FE, Angus CW, Partis WJ, Sigounas G (2012) Developmental pathways in colon cancer: crosstalk between WNT, BMP, hedgehog and notch. Cell Cycle 11:4344–4351. https://doi.org/10.4161/cc.22134 [DOI: 10.4161/cc.22134]
  40. Purow B, NOTCH INHIBITION AS A PROMISING NEW APPROACH TO CANCER THERAPY (2012) Adv Exp Med Biol 727:305–319. https://doi.org/10.1007/978-1-4614-0899-4_23 [DOI: 10.1007/978-1-4614-0899-4_23]
  41. Huang R, Wang G, Song Y et al (2015) Colorectal cancer stem cell and chemoresistant colorectal cancer cell phenotypes and increased sensitivity to Notch pathway inhibitor. Mol Med Rep 12:2417–2424. https://doi.org/10.3892/mmr.2015.3694 [DOI: 10.3892/mmr.2015.3694]
  42. Rodriguez JM, Miranda D, Bunout D et al (2015) Folates induce colorectal carcinoma HT29 cell line proliferation through Notch1 signaling. Nutr Cancer 67:706–711. https://doi.org/10.1080/01635581.2015.1011285 [DOI: 10.1080/01635581.2015.1011285]
  43. Sebestyén A, Dankó T, Sztankovics D et al (2021) The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 40:989–1033. https://doi.org/10.1007/s10555-021-10006-2 [DOI: 10.1007/s10555-021-10006-2]
  44. Magaway C, Kim E, Jacinto E (2019) Targeting mTOR and metabolism in Cancer: lessons and innovations. Cells 8:1584. https://doi.org/10.3390/cells8121584 [DOI: 10.3390/cells8121584]
  45. Krencz I, Vetlényi E, Dankó T et al (2022) Metabolic adaptation as potential target in Papillary Renal Cell Carcinomas based on their in situ metabolic characteristics. Int J Mol Sci 23:10587. https://doi.org/10.3390/ijms231810587 [DOI: 10.3390/ijms231810587]
  46. Coleman MF, O’Flanagan CH, Pfeil AJ et al (2021) Metabolic response of Triple-negative breast Cancer to Folate Restriction. Nutrients 13:1637. https://doi.org/10.3390/nu13051637 [DOI: 10.3390/nu13051637]
  47. Chen W-J, Huang R-FS (2018) Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers. J Nutr Biochem 53:28–38. https://doi.org/10.1016/j.jnutbio.2017.10.001 [DOI: 10.1016/j.jnutbio.2017.10.001]
  48. Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion. https://pubs.acs.org/doi/epdf/10.1021/acs.jproteome.6b00188 . Accessed 21 Jul 2023
  49. Landor SK-J, Mutvei AP, Mamaeva V et al (2011) Hypo- and hyperactivated notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci USA 108:18814–18819. https://doi.org/10.1073/pnas.1104943108 [DOI: 10.1073/pnas.1104943108]
  50. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45 [DOI: 10.1093/nar/29.9.e45]
  51. Yamamoto N, Ueda-Wakagi M, Sato T et al (2015) Measurement of glucose uptake in cultured cells. Curr Protocols Pharmacol 71. 12.14.1-12.14.26
  52. Farnie G, Clarke RB (2007) Mammary stem cells and breast cancer–role of notch signalling. Stem Cell Rev 3:169–175 [DOI: 10.1007/s12015-007-0023-5]
  53. Zhdanovskaya N, Firrincieli M, Lazzari S et al (2021) Targeting notch to maximize chemotherapeutic benefits: Rationale, Advanced Strategies, and future perspectives. Cancers (Basel) 13:5106. https://doi.org/10.3390/cancers13205106 [DOI: 10.3390/cancers13205106]
  54. Keyes MK, Jang H, Mason JB et al (2007) Older Age and Dietary Folate are determinants of genomic and p16-Specific DNA methylation in mouse Colon. J Nutr 137:1713–1717. https://doi.org/10.1093/jn/137.7.1713 [DOI: 10.1093/jn/137.7.1713]
  55. Williams EA (2012) Folate, colorectal cancer and the involvement of DNA methylation. Proc Nutr Soc 71:592–597. https://doi.org/10.1017/S0029665112000717
  56. Pieroth R, Paver S, Day S, Lammersfeld C (2018) Folate and its impact on Cancer Risk. Curr Nutr Rep 7:70–84. https://doi.org/10.1007/s13668-018-0237-y [DOI: 10.1007/s13668-018-0237-y]
  57. Cravo ML, Mason JB, Dayal Y et al (1992) Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res 52:5002–5006 [PMID: 1516055]
  58. Kim Y-I (2003) Role of folate in Colon Cancer Development and Progression. J Nutr 133. https://doi.org/10.1093/jn/133.11.3731S . :3731S-3739S
  59. Hubner RA, Houlston RS (2009) Folate and colorectal cancer prevention. Br J Cancer 100:233–239. https://doi.org/10.1038/sj.bjc.6604823 [DOI: 10.1038/sj.bjc.6604823]
  60. Rosati R, Ma H, Cabelof DC (2012) Folate and Colorectal Cancer in rodents: a Model of DNA Repair Deficiency. J Oncol 2012:105949. https://doi.org/10.1155/2012/105949 [DOI: 10.1155/2012/105949]
  61. Song J, Medline A, Mason JB et al (2000) Effects of Dietary Folate on Intestinal Tumorigenesis in the ApcMin Mouse1. Cancer Res 60:5434–5440 [PMID: 11034085]
  62. Ventrella-Lucente LF, Unnikrishnan A, Pilling AB et al (2010) Folate Deficiency provides protection against Colon carcinogenesis in DNA polymerase β haploinsufficient mice *. J Biol Chem 285:19246–19258. https://doi.org/10.1074/jbc.M109.069807 [DOI: 10.1074/jbc.M109.069807]
  63. Oliai Araghi S, Kiefte-de Jong JC, van Dijk SC et al (2019) Folic acid and vitamin B12 supplementation and the risk of Cancer: long-term follow-up of the B vitamins for the Prevention of osteoporotic fractures (B-PROOF) trial. Cancer Epidemiol Biomarkers Prev 28:275–282. https://doi.org/10.1158/1055-9965.EPI-17-1198 [DOI: 10.1158/1055-9965.EPI-17-1198]
  64. Feng H-C, Lin J-Y, Hsu S-H et al (2017) Low folate metabolic stress reprograms DNA methylation-activated sonic hedgehog signaling to mediate cancer stem cell-like signatures and invasive tumour stage-specific malignancy of human colorectal cancers. Int J Cancer 141:2537–2550. https://doi.org/10.1002/ijc.31008 [DOI: 10.1002/ijc.31008]
  65. Kang JH, Lee S-H, Lee J-S et al (2016) Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 7:49397–49410. https://doi.org/10.18632/oncotarget.10354 [DOI: 10.18632/oncotarget.10354]
  66. Kim S-E (2020) Enzymes involved in folate metabolism and its implication for cancer treatment. Nutr Res Pract 14:95. https://doi.org/10.4162/nrp.2020.14.2.95 [DOI: 10.4162/nrp.2020.14.2.95]
  67. Koseki J, Konno M, Asai A et al (2018) Enzymes of the one-carbon folate metabolism as anticancer targets predicted by survival rate analysis. Sci Rep 8:303. https://doi.org/10.1038/s41598-017-18456-x [DOI: 10.1038/s41598-017-18456-x]
  68. Zhu Z, Leung GKK (2020) More than a metabolic enzyme: MTHFD2 as a Novel Target for Anticancer Therapy? https://doi.org/10.3389/fonc.2020.00658 . Front Oncol 10:
  69. Guéant J-L, Oussalah A, Zgheib R et al (2020) Genetic, epigenetic and genomic mechanisms of methionine dependency of cancer and tumor-initiating cells: what could we learn from folate and methionine cycles. Biochimie 173:123–128. https://doi.org/10.1016/j.biochi.2020.03.015 [DOI: 10.1016/j.biochi.2020.03.015]
  70. Dekhne AS, Ning C, Nayeen MJ et al (2020) Cellular Pharmacodynamics of a Novel Pyrrolo[3,2- d ]pyrimidine inhibitor targeting mitochondrial and cytosolic one-Carbon Metabolism. Mol Pharmacol 97:9–22. https://doi.org/10.1124/mol.119.117937 [DOI: 10.1124/mol.119.117937]
  71. Cho RC, Cole PD, Sohn K-J et al (2007) Effects of folate and folylpolyglutamyl synthase modulation on chemosensitivity of breast cancer cells. Mol Cancer Ther 6:2909–2920. https://doi.org/10.1158/1535-7163.MCT-07-0449 [DOI: 10.1158/1535-7163.MCT-07-0449]
  72. Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for Cancer Therapy. Cell Chem Biology 24:1161–1180. https://doi.org/10.1016/j.chembiol.2017.08.028 [DOI: 10.1016/j.chembiol.2017.08.028]
  73. Stine ZE, Schug ZT, Salvino JM, Dang CV (2022) Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 21:141–162. https://doi.org/10.1038/s41573-021-00339-6 [DOI: 10.1038/s41573-021-00339-6]
  74. Potente M, Gerhardt H, Carmeliet P (2011) Basic and Therapeutic aspects of Angiogenesis. Cell 146:873–887. https://doi.org/10.1016/j.cell.2011.08.039 [DOI: 10.1016/j.cell.2011.08.039]
  75. Melone MAB, Valentino A, Margarucci S et al (2018) The carnitine system and cancer metabolic plasticity. Cell Death Dis 9:228. https://doi.org/10.1038/s41419-018-0313-7 [DOI: 10.1038/s41419-018-0313-7]
  76. Campbell SL, Wellen KE (2018) Metabolic signaling to the Nucleus in Cancer. Mol Cell 71:398–408. https://doi.org/10.1016/j.molcel.2018.07.015 [DOI: 10.1016/j.molcel.2018.07.015]
  77. Barbosa AM, Martel F (2020) Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds. Cancers (Basel) 12:. https://doi.org/10.3390/cancers12010154
  78. Pajak B, Siwiak E, Sołtyka M et al (2019) 2-Deoxy-d-Glucose and its analogs: from Diagnostic to Therapeutic agents. Int J Mol Sci 21. https://doi.org/10.3390/ijms21010234
  79. Cassim S, Pouyssegur J (2019) Tumor Microenvironment: a metabolic player that shapes the Immune response. Int J Mol Sci 21. https://doi.org/10.3390/ijms21010157
  80. Ogier-Denis E, Bauvy C, Aubery M et al (1989) Processing of asparagine-linked oligosaccharides is an early biochemical marker of the enterocytic differentiation of HT-29 cells. J Cell Biochem 41:13–23. https://doi.org/10.1002/jcb.240410103 [DOI: 10.1002/jcb.240410103]
  81. Park WH, Han YW, Kim SH, Kim SZ (2007) An ROS generator, antimycin A, inhibits the growth of HeLa cells via apoptosis. J Cell Biochem 102:98–109. https://doi.org/10.1002/jcb.21280 [DOI: 10.1002/jcb.21280]
  82. Han YH, Kim SH, Kim SZ, Park WH (2009) Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death. Mol Med Rep 2:307–311. https://doi.org/10.3892/mmr_00000101 [DOI: 10.3892/mmr_00000101]
  83. Fan J, Ye J, Kamphorst JJ et al (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510:298–302. https://doi.org/10.1038/nature13236 [DOI: 10.1038/nature13236]
  84. Zheng Y, Cantley LC (2019) Toward a better understanding of folate metabolism in health and disease. J Exp Med 216:253–266. https://doi.org/10.1084/jem.20181965 [DOI: 10.1084/jem.20181965]
  85. Yang L, Garcia Canaveras JC, Chen Z et al (2020) Serine catabolism feeds NADH when respiration is impaired. Cell Metabol 31:809–821e6. https://doi.org/10.1016/j.cmet.2020.02.017 [DOI: 10.1016/j.cmet.2020.02.017]
  86. Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Experimental Clin Cancer Res 34:111. https://doi.org/10.1186/s13046-015-0221-y [DOI: 10.1186/s13046-015-0221-y]
  87. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800. https://doi.org/10.1016/j.molcel.2017.05.032 [DOI: 10.1016/j.molcel.2017.05.032]
  88. Xu X, Jiang J, Yao L, Ji B (2018) Silencing the FOLR2 gene inhibits cell proliferation and increases apoptosis in the NCI-H1650 Non-small Cell Lung Cancer Cell line via inhibition of AKT/Mammalian target of Rapamycin (mTOR)/Ribosomal protein S6 kinase 1 (S6K1) signaling. Med Sci Monit 24:8064–8073. https://doi.org/10.12659/MSM.911384 [DOI: 10.12659/MSM.911384]
  89. Silva E, Rosario FJ, Powell TL, Jansson T (2017) Mechanistic target of rapamycin is a novel molecular mechanism linking folate availability and cell function. J Nutr 147:1237–1242. https://doi.org/10.3945/jn.117.248823 [DOI: 10.3945/jn.117.248823]
  90. Takebe N, Nguyen D, Yang SX (2014) Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 141:140–149. https://doi.org/10.1016/j.pharmthera.2013.09.005 [DOI: 10.1016/j.pharmthera.2013.09.005]
  91. Medina MA, Oza G, Sharma A et al (2020) Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. International Journal of Environmental Research and Public Health 17:2078. https://doi.org/10.3390/ijerph17062078
  92. Pajvani UB, Qiang L, Kangsamaksin T et al (2013) Inhibition of Notch uncouples akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat Med 19:1054–1060. https://doi.org/10.1038/nm.3259 [DOI: 10.1038/nm.3259]
  93. Xu J, Chi F, Guo T et al (2015) NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest 125:1579–1590. https://doi.org/10.1172/JCI76468 [DOI: 10.1172/JCI76468]
  94. Li Y, Sun R, Zou J et al (2019) Dual roles of the AMP-Activated protein kinase pathway in Angiogenesis. Cells 8:752. https://doi.org/10.3390/cells8070752 [DOI: 10.3390/cells8070752]
  95. Lennicke C, Cochemé HM (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 81:3691–3707. https://doi.org/10.1016/j.molcel.2021.08.018 [DOI: 10.1016/j.molcel.2021.08.018]
  96. Zhao Y, Hu X, Liu Y et al (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16:79. https://doi.org/10.1186/s12943-017-0648-1 [DOI: 10.1186/s12943-017-0648-1]
  97. Pannuti A, Foreman K, Rizzo P et al (2010) Targeting notch to target cancer stem cells. Clin Cancer Res 16:3141–3152. https://doi.org/10.1158/1078-0432.CCR-09-2823 [DOI: 10.1158/1078-0432.CCR-09-2823]

Grants

  1. Proyecto 2016/Proyecto Sochinut-Tetrapak
  2. PhD scholarship 21160444/Comisión Nacional de Investigación Científica y Tecnológica
  3. ENL 01/23/Proyecto Vicerrectoría de Investigación y Desarrollo, Universidad de Chile

MeSH Term

Humans
Receptor, Notch1
Glucose
Folic Acid
Colorectal Neoplasms
HT29 Cells
Neoplastic Stem Cells
Signal Transduction
Oxygen Consumption
Neoplasm Proteins

Chemicals

Receptor, Notch1
Glucose
NOTCH1 protein, human
Folic Acid
Neoplasm Proteins

Word Cloud

Created with Highcharts 10.0.0FANotch-1glucosecancerpathwayactivationstemness-likecellconsumptioncellsstemnessmetabolicconcentrationsdeathdeprivationexpressionoxygenAMPKeffectsdecreasingHoweverseveralsuggestfolateincreasesCancersurvivalassociatedHT-29protectsdeprivation-inducednMgenephosphorylationFolateEvidencefolate'sprotectiveneuraltubedefectsledUSAChilestartmandatoryfolicacidfortificationprograms50%∼30%populationconsumingfortifiedfoodsreachsupraphysiologicserumlevelsAlthoughcontroversialepidemiologicalclinicalobservationsriskgivingconcernriskssupplementationstemCSCsmodelusedexplainanticancertherapiesplaysrolecancersprocessDifferentstudiesshowmodulationpathwaysregulatescapacitySupraphysiologicincreaseproliferationwhethercaninducephenotypeknownhypothesizedchallengedbasal20supraphysiological4005-MTHFanalyzedchangesdifferentenergeticfunctionsSupraphysiologicalincreasedgenesimprovedinducingHSP-70proteinevaluatedusingDAPTsiRNAinhibitorspreventingprotectionMoreoverdecreasedresultscriticalmediatornutrientavailabilityactivatesinducesnotch-1colorectalMetabolism

Similar Articles

Cited By