Activity of Epsilon-poly-L-lysine against Multidrug-Resistant and Isolates of Urinary Tract Infections.

Telma de Sousa, Carolina Sabença, Miguel Ribeiro, Mario Pino-Hurtado, Carmen Torres, Michel Hébraud, Olimpia Alves, Sara Sousa, Eliana Costa, Gilberto Igrejas, Patrícia Poeta
Author Information
  1. Telma de Sousa: MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal. ORCID
  2. Carolina Sabença: MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal. ORCID
  3. Miguel Ribeiro: Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
  4. Mario Pino-Hurtado: Area of Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain. ORCID
  5. Carmen Torres: Area of Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain. ORCID
  6. Michel Hébraud: Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Université Clermont Auvergne (UCA), UMR Microbiologie Environnement Digestif Santé (MEDiS), 63122 Saint-Genès-Champanelle, France. ORCID
  7. Olimpia Alves: Clinical Pathology Department, Hospital Centre of Trás-os-Montes and Alto Douro, 5000-508 Vila Real, Portugal.
  8. Sara Sousa: Clinical Pathology Department, Hospital Centre of Trás-os-Montes and Alto Douro, 5000-508 Vila Real, Portugal. ORCID
  9. Eliana Costa: Clinical Pathology Department, Hospital Centre of Trás-os-Montes and Alto Douro, 5000-508 Vila Real, Portugal.
  10. Gilberto Igrejas: Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal. ORCID
  11. Patrícia Poeta: MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal. ORCID

Abstract

and are notorious for their resistance to antibiotics and propensity for biofilm formation, posing significant threats to human health. Epsilon-poly-L-lysine (ε-PL) emerges as a naturally occurring antimicrobial poly(amino acid), which positions it as a prospective agent for addressing challenges linked to multidrug resistance. ε-PL symbolizes a promising avenue in the pursuit of efficacious therapeutic strategies and warrants earnest consideration within the realm of clinical treatment. Thus, our objective was to determine the antibiotic susceptibility profiles of 38 selected and ESBL-producing clinical isolates and determine the ability of ε-PL to inhibit biofilm formation. After PCR analysis, detection of genes related to β-lactamases was observed among the selected isolates of [ (35.7%), (35.7%), (14.3%), (14.3%), (14.3%), (7.1%), (7.1%), (7.1%), and (7.1%)] and [ (91.7%), (83.3%), (16.7%), (12.5%), and (4.2%)]. The results of testing the activity of ε-PL against the clinical isolates showed relatively high minimum inhibitory concentrations (MICs) for the (range: 8-64 µg/mL) and isolates (range: 16-32 µg/mL). These results suggest the need for prior optimization of ε-PL concerning its viability as an alternative to antibiotics for treating infections caused by and of clinical origin. It is noteworthy that, in the context of a low antibiotic discovery rate, ε-PL could play a significant role in this quest, considering its low toxicity and the unlikely development of resistance. Upon exposure to ε-PL, and isolates exhibited a reduction in biofilm production, with ε-PL concentration showing an inverse relationship, particularly in isolates initially characterized as strong or moderate producers, indicating its potential as a natural antimicrobial agent with further research needed to elucidate optimal concentrations and application methods across different bacterial species. Further research is needed to optimize its use and explore its potential in various applications.

Keywords

References

  1. Front Bioeng Biotechnol. 2021 Sep 28;9:748976 [PMID: 34650962]
  2. Biotechnol Lett. 2010 Sep;32(9):1299-303 [PMID: 20464451]
  3. Cold Spring Harb Perspect Med. 2016 Apr 01;6(4):a025387 [PMID: 26989065]
  4. J Vis Exp. 2011 Jan 30;(47): [PMID: 21307833]
  5. Int J Mol Sci. 2021 Nov 29;22(23): [PMID: 34884697]
  6. Front Chem. 2021 Mar 30;9:659304 [PMID: 33869146]
  7. J Innate Immun. 2018;10(5-6):442-454 [PMID: 29617698]
  8. Antimicrob Agents Chemother. 2000 Jun;44(6):1568-74 [PMID: 10817710]
  9. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32631822]
  10. J Glob Antimicrob Resist. 2017 Mar;8:35-40 [PMID: 27984780]
  11. J Infect Dev Ctries. 2012 Nov 26;6(11):757-62 [PMID: 23277500]
  12. PLoS One. 2021 May 4;16(5):e0250525 [PMID: 33945553]
  13. Microb Drug Resist. 2019 Nov;25(9):1282-1286 [PMID: 31361568]
  14. Biotechnol Biofuels Bioprod. 2022 Jun 16;15(1):65 [PMID: 35710433]
  15. Expert Rev Anti Infect Ther. 2018 Oct;16(10):749-761 [PMID: 30207815]
  16. Microb Genom. 2019 Sep;7(6): [PMID: 32234124]
  17. J Med Microbiol. 2018 Jun;67(6):838-845 [PMID: 29633934]
  18. Biomed Res Int. 2018 Feb 26;2018:8607647 [PMID: 29682565]
  19. J Clin Microbiol. 2006 Dec;44(12):4444-54 [PMID: 17005735]
  20. Antibiotics (Basel). 2022 Jan 12;11(1): [PMID: 35052969]
  21. BMC Genomics. 2019 Nov 7;20(1):822 [PMID: 31699025]
  22. Emerg Infect Dis. 2019 Sep;25(9):1632-1638 [PMID: 31441424]
  23. Curr Health Sci J. 2017 Apr-Jun;43(2):137-148 [PMID: 30595869]
  24. Emerg Infect Dis. 2007 Jul;13(7):986-93 [PMID: 18214169]
  25. Appl Microbiol Biotechnol. 2020 Jun;104(12):5427-5436 [PMID: 32307570]
  26. Int J Antimicrob Agents. 2007 Nov;30 Suppl 1:S71-5 [PMID: 17698326]
  27. Clin Lab. 2021 Oct 1;67(10): [PMID: 34655187]
  28. Infect Drug Resist. 2020 Jul 14;13:2311-2321 [PMID: 32765007]
  29. Expert Rev Anti Infect Ther. 2017 Sep;15(9):861-871 [PMID: 28803496]
  30. J Med Microbiol. 2004 Sep;53(Pt 9):841-853 [PMID: 15314190]
  31. Microb Drug Resist. 2020 Feb;26(2):118-125 [PMID: 31539303]
  32. Antimicrob Agents Chemother. 2004 Oct;48(10):3996-4001 [PMID: 15388464]
  33. Front Microbiol. 2023 Apr 14;14:1117017 [PMID: 37125174]
  34. J Antimicrob Chemother. 2021 Sep 15;76(10):2538-2545 [PMID: 34164678]
  35. Am J Respir Crit Care Med. 2018 Mar 15;197(6):708-727 [PMID: 29087211]
  36. J Med Microbiol. 2000 Oct;49(10):929-936 [PMID: 11023190]
  37. J Bacteriol. 2011 Oct;193(19):5510-3 [PMID: 21784934]
  38. Vet Microbiol. 2000 Jul 3;75(1):73-82 [PMID: 10865153]
  39. PLoS One. 2018 Jun 8;13(6):e0198526 [PMID: 29883490]
  40. Burns. 2014 Dec;40(8):1556-61 [PMID: 24767143]
  41. Mol Microbiol. 1995 May;16(3):485-96 [PMID: 7565109]
  42. Antimicrob Agents Chemother. 2003 Oct;47(10):3214-21 [PMID: 14506033]
  43. Antimicrob Agents Chemother. 1993 Apr;37(4):927-8 [PMID: 8494396]
  44. Antimicrob Agents Chemother. 1994 Oct;38(10):2477-9 [PMID: 7840592]
  45. J Glob Antimicrob Resist. 2020 Mar;20:87-93 [PMID: 31306816]
  46. J Glob Antimicrob Resist. 2018 Dec;15:121-122 [PMID: 30248413]
  47. Antimicrob Agents Chemother. 2003 Mar;47(3):1169-72 [PMID: 12604565]
  48. J Clin Microbiol. 2022 Mar 16;60(3):e0224521 [PMID: 35107303]
  49. Enferm Infecc Microbiol Clin. 2017 Dec;35(10):630-637 [PMID: 27480954]
  50. Microb Drug Resist. 2018 Sep;24(7):1020-1030 [PMID: 29261405]
  51. Asian Pac J Cancer Prev. 2020 May 01;21(5):1333-1338 [PMID: 32458641]
  52. Int J Mol Sci. 2020 Nov 17;21(22): [PMID: 33212950]
  53. Epidemiol Infect. 2017 Feb;145(3):595-599 [PMID: 27788691]
  54. Sci Rep. 2019 Apr 18;9(1):6266 [PMID: 31000772]
  55. Sci Rep. 2020 Jan 27;10(1):1232 [PMID: 31988374]
  56. BMC Microbiol. 2013 Jun 18;13:138 [PMID: 23773707]
  57. J Antimicrob Chemother. 2007 Feb;59(2):321-2 [PMID: 17185300]
  58. mBio. 2014 Apr 08;5(2):e01015 [PMID: 24713325]
  59. Antibiotics (Basel). 2022 Jan 27;11(2): [PMID: 35203770]
  60. Ann Lab Med. 2012 Sep;32(5):359-61 [PMID: 22950072]
  61. Int J Environ Res Public Health. 2020 Aug 28;17(17): [PMID: 32872324]
  62. Microb Pathog. 2018 Feb;115:25-30 [PMID: 29248513]
  63. Antibiotics (Basel). 2022 Nov 03;11(11): [PMID: 36358193]
  64. Microbiol Spectr. 2021 Oct 31;9(2):e0130521 [PMID: 34704778]
  65. PLoS One. 2017 May 26;12(5):e0178178 [PMID: 28552972]
  66. Med Sci Monit. 2017 Sep 01;23:4225-4229 [PMID: 28863128]
  67. Int J Mol Sci. 2023 Feb 02;24(3): [PMID: 36769174]
  68. Int J Antimicrob Agents. 2018 Sep;52(3):331-337 [PMID: 29654892]

Grants

  1. DFA/BD/5332/2020/Fundação para a Ciência e Tecnologia
  2. 2020.06967.BD/Fundação para a Ciência e Tecnologia
  3. UIDP/00772/2020/Fundação para a Ciência e Tecnologia
  4. LA/P/0059/2020/Fundação para a Ciência e Tecnologia

Word Cloud

Created with Highcharts 10.0.0ε-PLisolatesresistancebiofilmclinical7%3%71%Epsilon-poly-L-lysineantibiotic14antibioticsformationsignificantantimicrobialagentdetermineselected[35]resultsconcentrationsrange:µg/mLlowpotentialresearchneedednotoriouspropensityposingthreatshumanhealthemergesnaturallyoccurringpolyaminoacidpositionsprospectiveaddressingchallengeslinkedmultidrugsymbolizespromisingavenuepursuitefficacioustherapeuticstrategieswarrantsearnestconsiderationwithinrealmtreatmentThusobjectivesusceptibilityprofiles38ESBL-producingabilityinhibitPCRanalysisdetectiongenesrelatedβ-lactamasesobservedamong918316125%42%testingactivityshowedrelativelyhighminimuminhibitoryMICs8-6416-32suggestneedprioroptimizationconcerningviabilityalternativetreatinginfectionscausedoriginnoteworthycontextdiscoveryrateplayrolequestconsideringtoxicityunlikelydevelopmentUponexposureexhibitedreductionproductionconcentrationshowinginverserelationshipparticularlyinitiallycharacterizedstrongmoderateproducersindicatingnaturalelucidateoptimalapplicationmethodsacrossdifferentbacterialspeciesoptimizeuseexplorevariousapplicationsActivityMultidrug-ResistantIsolatesUrinaryTractInfectionsKlebsiellapneumoniaePseudomonasaeruginosa

Similar Articles

Cited By