Reducing Sample Size While Improving Equity in Vaccine Clinical Trials: A Machine Learning-Based Recruitment Methodology with Application to Improving Trials of Hepatitis C Virus Vaccines in People Who Inject Drugs.

Richard Chiu, Eric Tatara, Mary Ellen Mackesy-Amiti, Kimberly Page, Jonathan Ozik, Basmattee Boodram, Harel Dahari, Alexander Gutfraind
Author Information
  1. Richard Chiu: Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA. ORCID
  2. Eric Tatara: Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA.
  3. Mary Ellen Mackesy-Amiti: Division of Community Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA. ORCID
  4. Kimberly Page: Department of Internal Medicine, Division of Epidemiology, Biostatistics and Preventive Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA. ORCID
  5. Jonathan Ozik: Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA. ORCID
  6. Basmattee Boodram: Division of Community Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA.
  7. Harel Dahari: The Program for Experimental & Theoretical Modeling, Department of Medicine, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60660, USA. ORCID
  8. Alexander Gutfraind: The Program for Experimental & Theoretical Modeling, Department of Medicine, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60660, USA. ORCID

Abstract

Despite the availability of direct-acting antivirals that cure individuals infected with the hepatitis C virus (HCV), developing a vaccine is critically needed in achieving HCV elimination. HCV vaccine trials have been performed in populations with high incidence of new HCV infection such as people who inject drugs (PWID). Developing strategies of optimal recruitment of PWID for HCV vaccine trials could reduce sample size, follow-up costs and disparities in enrollment. We investigate trial recruitment informed by machine learning and evaluate a strategy for HCV vaccine trials termed PREDICTEE-Predictive Recruitment and Enrichment method balancing Demographics and Incidence for Clinical Trial Equity and Efficiency. PREDICTEE utilizes a survival analysis model applied to trial candidates, considering their demographic and injection characteristics to predict the candidate's probability of HCV infection during the trial. The decision to recruit considers both the candidate's predicted incidence and demographic characteristics such as age, sex, and race. We evaluated PREDICTEE using in silico methods, in which we first generated a synthetic candidate pool and their respective HCV infection events using HepCEP, a validated agent-based simulation model of HCV transmission among PWID in metropolitan Chicago. We then compared PREDICTEE to conventional recruitment of high-risk PWID who share drugs or injection equipment in terms of sample size and recruitment equity, with the latter measured by participation-to-prevalence ratio (PPR) across age, sex, and race. Comparing conventional recruitment to PREDICTEE found a reduction in sample size from 802 (95%: 642-1010) to 278 (95%: 264-294) with PREDICTEE, while also reducing screening requirements by 30%. Simultaneously, PPR increased from 0.475 (95%: 0.356-0.568) to 0.754 (95%: 0.685-0.834). Even when targeting a dissimilar maximally balanced population in which achieving recruitment equity would be more difficult, PREDICTEE is able to reduce sample size from 802 (95%: 642-1010) to 304 (95%: 288-322) while improving PPR to 0.807 (95%: 0.792-0.821). PREDICTEE presents a promising strategy for HCV clinical trial recruitment, achieving sample size reduction while improving recruitment equity.

Keywords

References

  1. J R Stat Soc Ser A Stat Soc. 2018 Oct;181(4):1193-1209 [PMID: 30555215]
  2. Hepatology. 2018 Mar;67(3):837-846 [PMID: 29059461]
  3. Stat Med. 2011 May 10;30(10):1105-17 [PMID: 21484848]
  4. Am Heart J. 2021 Sep;239:73-79 [PMID: 34033803]
  5. Stat Med. 2023 Jun 15;42(13):2179-2190 [PMID: 36977424]
  6. J Acquir Immune Defic Syndr. 2007 May 1;45(1):108-14 [PMID: 17460474]
  7. Clin Trials. 2017 Dec;14(6):629-638 [PMID: 28795578]
  8. Trials. 2023 May 15;24(1):329 [PMID: 37189166]
  9. N Engl J Med. 2021 Feb 11;384(6):541-549 [PMID: 33567193]
  10. Int J Drug Policy. 2021 Sep;95:103255 [PMID: 33853033]
  11. Future Oncol. 2021 Aug;17(24):3271-3280 [PMID: 34047192]
  12. Contemp Clin Trials. 2015 Nov;45(Pt A):26-33 [PMID: 26188165]
  13. Cancer. 2022 Jan 15;128(2):216-221 [PMID: 34495551]
  14. Clin Pharmacol Ther. 2010 Dec;88(6):774-8 [PMID: 20944560]
  15. JAMA. 1982 May 14;247(18):2543-6 [PMID: 7069920]
  16. Circulation. 2020 Feb 18;141(7):540-548 [PMID: 32065763]
  17. Gut. 2006 Aug;55(8):1183-7 [PMID: 16434426]
  18. BJR Open. 2023 May 16;5(1):20220023 [PMID: 37953865]
  19. PLoS One. 2013 Jun 05;8(6):e64789 [PMID: 23755143]
  20. Nephrol Dial Transplant. 2017 Nov 01;32(11):1857-1865 [PMID: 27484667]
  21. Public Health Rep. 2007;122 Suppl 1:48-55 [PMID: 17354527]
  22. Trials. 2015 Nov 03;16:495 [PMID: 26530985]
  23. Stat Appl Genet Mol Biol. 2011;10(1):32 [PMID: 22889876]
  24. Trends Pharmacol Sci. 2019 Aug;40(8):577-591 [PMID: 31326235]
  25. Vaccine. 2021 Jan 15;39(3):536-544 [PMID: 33334614]
  26. Biostatistics. 2013 Sep;14(4):613-25 [PMID: 23525452]
  27. Contemp Clin Trials. 2015 Mar;41:9-16 [PMID: 25553715]
  28. Epidemiol Rev. 2022 Dec 21;44(1):110-120 [PMID: 36193844]
  29. Clin Infect Dis. 2013 Aug;57 Suppl 2:S56-61 [PMID: 23884067]
  30. PLoS One. 2015 Sep 30;10(9):e0137993 [PMID: 26421722]
  31. Curr Opin Gastroenterol. 2014 May;30(3):217-22 [PMID: 24625897]
  32. Contemp Clin Trials. 2008 Sep;29(5):671-8 [PMID: 18511350]
  33. BMJ. 2016 Jan 15;352:i189 [PMID: 26773001]
  34. J Viral Hepat. 2020 Mar;27(3):243-260 [PMID: 31664755]
  35. Pharm Stat. 2019 May;18(3):351-365 [PMID: 30652403]
  36. JAMA Oncol. 2022 Mar 1;8(3):479-480 [PMID: 34989792]
  37. Clin Trials. 2015 Feb;12(1):77-83 [PMID: 25475878]
  38. Proc Winter Simul Conf. 2019 Dec;2019:1008-1019 [PMID: 32624641]
  39. Stat Med. 2011 Dec 10;30(28):3267-84 [PMID: 22105690]
  40. Hepatology. 2019 Mar;69(3):1020-1031 [PMID: 30398671]
  41. Vaccine. 2010 Aug 23;28(37):5947-51 [PMID: 20638453]
  42. AIDS Behav. 2012 May;16(4):890-9 [PMID: 21874352]
  43. Biometrics. 2003 Sep;59(3):531-41 [PMID: 14601754]
  44. Infect Dis Clin North Am. 2017 Dec;31(4):827-838 [PMID: 29079161]
  45. Vaccine. 2022 Mar 15;40(12):1783-1789 [PMID: 35164989]
  46. Hepatology. 2004 Oct;40(4):892-9 [PMID: 15382122]
  47. PLoS One. 2011;6(11):e27555 [PMID: 22110669]
  48. Lancet Gastroenterol Hepatol. 2021 Apr;6(4):253 [PMID: 33714362]
  49. Can J Gastroenterol. 2007 Jul;21(7):447-51 [PMID: 17637948]
  50. Mayo Clin Proc. 2021 Jan;96(1):264-266 [PMID: 33413830]
  51. J Natl Med Assoc. 2016 Feb;108(1):24-9 [PMID: 26928485]
  52. Hepatology. 2014 Feb;59(2):366-9 [PMID: 23873507]
  53. Drug Alcohol Depend. 2015 Sep 1;154:229-35 [PMID: 26169447]
  54. J Urban Health. 2018 Feb;95(1):71-82 [PMID: 28875410]
  55. Harm Reduct J. 2013 May 07;10:7 [PMID: 23651646]
  56. PLoS One. 2022 Mar 10;17(3):e0264983 [PMID: 35271634]
  57. Contemp Clin Trials Commun. 2021 Jan 07;21:100702 [PMID: 33511300]
  58. BMC Med Res Methodol. 2019 Jul 22;19(1):159 [PMID: 31331277]
  59. J Am Coll Cardiol. 2018 May 8;71(18):1960-1969 [PMID: 29724348]
  60. BMC Med Res Methodol. 2022 Apr 19;22(1):115 [PMID: 35439947]
  61. JAMA Netw Open. 2018 Dec 7;1(8):e186371 [PMID: 30646319]
  62. J R Stat Soc Ser C Appl Stat. 2022 Jun;71(3):669-697 [PMID: 35968541]
  63. JAMA Netw Open. 2020 May 1;3(5):e205202 [PMID: 32437574]
  64. NPJ Digit Med. 2023 Nov 25;6(1):217 [PMID: 38001154]
  65. Stroke. 2017 Jul;48(7):2021-2025 [PMID: 28536178]
  66. Contemp Clin Trials. 2018 Mar;66:74-79 [PMID: 29330082]

Grants

  1. R01-AI158666/NIH HHS

Word Cloud

Created with Highcharts 10.0.0HCVrecruitmentPREDICTEE95%:trial0vaccinesamplesizePWIDequityCachievingtrialsinfectiondrugsPPRhepatitisincidencepeopleinjectreducemachinelearningstrategyRecruitmentClinicalEquitymodeldemographicinjectioncharacteristicscandidate'sagesexraceusingconventionalreduction802642-1010improvingclinicalImprovingDespiteavailabilitydirect-actingantiviralscureindividualsinfectedvirusdevelopingcriticallyneededeliminationperformedpopulationshighnewDevelopingstrategiesoptimalfollow-upcostsdisparitiesenrollmentinvestigateinformedevaluatetermedPREDICTEE-PredictiveEnrichmentmethodbalancingDemographicsIncidenceTrialEfficiencyutilizessurvivalanalysisappliedcandidatesconsideringpredictprobabilitydecisionrecruitconsiderspredictedevaluatedsilicomethodsfirstgeneratedsyntheticcandidatepoolrespectiveeventsHepCEPvalidatedagent-basedsimulationtransmissionamongmetropolitanChicagocomparedhigh-riskshareequipmenttermslattermeasuredparticipation-to-prevalenceratioacrossComparingfound278264-294alsoreducingscreeningrequirements30%Simultaneouslyincreased475356-0568754685-0834Eventargetingdissimilarmaximallybalancedpopulationdifficultable304288-322807792-0821presentspromisingReducingSampleSizeVaccineTrials:MachineLearning-BasedMethodologyApplicationTrialsHepatitisVirusVaccinesPeopleInjectDrugsrandomized

Similar Articles

Cited By