Advances in AI for Protein Structure Prediction: Implications for Cancer Drug Discovery and Development.

Xinru Qiu, Han Li, Greg Ver Steeg, Adam Godzik
Author Information
  1. Xinru Qiu: Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA. ORCID
  2. Han Li: Department of Computer Science and Engineering, University of California Riverside, Riverside, CA 92521, USA. ORCID
  3. Greg Ver Steeg: Department of Computer Science and Engineering, University of California Riverside, Riverside, CA 92521, USA.
  4. Adam Godzik: Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA.

Abstract

Recent advancements in AI-driven technologies, particularly in protein structure prediction, are significantly reshaping the landscape of drug discovery and development. This review focuses on the question of how these technological breakthroughs, exemplified by AlphaFold2, are revolutionizing our understanding of protein structure and function changes underlying cancer and improve our approaches to counter them. By enhancing the precision and speed at which drug targets are identified and drug candidates can be designed and optimized, these technologies are streamlining the entire drug development process. We explore the use of AlphaFold2 in cancer drug development, scrutinizing its efficacy, limitations, and potential challenges. We also compare AlphaFold2 with other algorithms like ESMFold, explaining the diverse methodologies employed in this field and the practical effects of these differences for the application of specific algorithms. Additionally, we discuss the broader applications of these technologies, including the prediction of protein complex structures and the generative AI-driven design of novel proteins.

Keywords

References

  1. Biomed Mater Devices. 2023 Feb 8;:1-8 [PMID: 36785697]
  2. Science. 2023 Mar 17;379(6637):1123-1130 [PMID: 36927031]
  3. Nature. 2023 Aug;620(7976):1089-1100 [PMID: 37433327]
  4. Clin Transl Sci. 2021 May;14(3):1113-1122 [PMID: 33831276]
  5. Nat Methods. 2024 Jan;21(1):117-121 [PMID: 37996753]
  6. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 [PMID: 15980461]
  7. Nat Biotechnol. 2022 Nov;40(11):1617-1623 [PMID: 36192636]
  8. Curr Protoc Bioinformatics. 2015 Dec 17;52:5.8.1-5.8.15 [PMID: 26678386]
  9. Nat Methods. 2024 Aug;21(8):1470-1480 [PMID: 38409223]
  10. Drug Discov Today. 2023 Jun;28(6):103551 [PMID: 36907321]
  11. Pharmacoeconomics. 2021 Nov;39(11):1243-1269 [PMID: 34368939]
  12. Nat Comput Sci. 2022 Dec;2(12):804-814 [PMID: 38177395]
  13. Adv Pharm Bull. 2017 Sep;7(3):339-348 [PMID: 29071215]
  14. J Mol Biol. 2018 Jul 20;430(15):2237-2243 [PMID: 29258817]
  15. J Phys Chem B. 2022 Sep 22;126(37):7172-7183 [PMID: 36041230]
  16. J Biol Chem. 2020 Jan 3;295(1):15-33 [PMID: 31712314]
  17. Science. 2021 Aug 20;373(6557):871-876 [PMID: 34282049]
  18. Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2311219120 [PMID: 37883436]
  19. Mol Pharm. 2020 Aug 3;17(8):2761-2767 [PMID: 32551659]
  20. Bioinform Adv. 2022 Apr 07;2(1):vbac023 [PMID: 36699410]
  21. J Comput Aided Mol Des. 2014 Oct;28(10):1009-14 [PMID: 25062767]
  22. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  23. Curr Opin Struct Biol. 2023 Feb;78:102526 [PMID: 36621153]
  24. Proteins. 2021 Dec;89(12):1607-1617 [PMID: 34533838]
  25. Sci Rep. 2023 May 5;13(1):7303 [PMID: 37147413]
  26. Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2303499120 [PMID: 37523536]
  27. Nat Biotechnol. 2023 Aug;41(8):1099-1106 [PMID: 36702895]
  28. Biochem Biophys Res Commun. 2022 Dec 25;636(Pt 1):10-16 [PMID: 36332470]
  29. Chem Sci. 2023 Jan 10;14(6):1443-1452 [PMID: 36794205]
  30. Pharmaceuticals (Basel). 2023 Jun 18;16(6): [PMID: 37375838]
  31. Science. 2023 Sep 22;381(6664):eadg7492 [PMID: 37733863]
  32. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  33. Nat Methods. 2024 Aug;21(8):1514-1524 [PMID: 38744917]
  34. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  35. Protein Sci. 2022 Dec;31(12):e4479 [PMID: 36261849]
  36. Proc Int Conf Intell Syst Mol Biol. 1997;5:187-90 [PMID: 9322034]
  37. PLoS Comput Biol. 2017 Jan 5;13(1):e1005324 [PMID: 28056090]
  38. Nucleic Acids Res. 2024 Jan 5;52(D1):D368-D375 [PMID: 37933859]
  39. Nucleic Acids Res. 2023 Jan 6;51(D1):D753-D759 [PMID: 36477304]
  40. Nature. 2021 Dec;600(7889):547-552 [PMID: 34853475]
  41. Science. 2022 Oct 7;378(6615):49-56 [PMID: 36108050]
  42. Nat Protoc. 2022 Mar;17(3):672-697 [PMID: 35121854]
  43. Front Genet. 2023 Feb 21;14:1052383 [PMID: 36896237]
  44. Evid Based Complement Alternat Med. 2022 May 13;2022:4629392 [PMID: 35600960]
  45. J Biomol NMR. 1996 Dec;8(4):477-86 [PMID: 9008363]
  46. Cell. 2020 Feb 20;180(4):688-702.e13 [PMID: 32084340]
  47. NPJ Digit Med. 2022 Jul 11;5(1):90 [PMID: 35817798]
  48. Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319 [PMID: 27899672]
  49. Science. 2022 Jul 22;377(6604):387-394 [PMID: 35862514]
  50. PLoS One. 2023 Mar 16;18(3):e0282689 [PMID: 36928239]
  51. Proteins. 2018 Mar;86 Suppl 1:7-15 [PMID: 29082672]
  52. Nature. 2023 May 4;: [PMID: 37142726]
  53. PLoS One. 2011;6(12):e28766 [PMID: 22163331]
  54. Nat Biomed Eng. 2021 Jun;5(6):493-497 [PMID: 34131324]
  55. Nat Protoc. 2021 Dec;16(12):5634-5651 [PMID: 34759384]
  56. Future Med Chem. 2021 Mar;13(6):575-585 [PMID: 33590764]
  57. Lancet Digit Health. 2020 May;2(5):e226-e227 [PMID: 32373787]
  58. Science. 2024 Apr 19;384(6693):eadl2528 [PMID: 38452047]
  59. J Struct Biol. 2023 Sep;215(3):108011 [PMID: 37562586]

Grants

  1. 75N93022C00035/NIAID NIH HHS

MeSH Term

Humans
Antineoplastic Agents
Neoplasms
Drug Discovery
Drug Development
Artificial Intelligence

Chemicals

Antineoplastic Agents

Word Cloud

Created with Highcharts 10.0.0drugAlphaFold2technologiesproteindevelopmentcancerAI-drivenstructurepredictiondiscoveryalgorithmsgenerativeAIRecentadvancementsparticularlysignificantlyreshapinglandscapereviewfocusesquestiontechnologicalbreakthroughsexemplifiedrevolutionizingunderstandingfunctionchangesunderlyingimproveapproachescounterenhancingprecisionspeedtargetsidentifiedcandidatescandesignedoptimizedstreamliningentireprocessexploreusescrutinizingefficacylimitationspotentialchallengesalsocomparelikeESMFoldexplainingdiversemethodologiesemployedfieldpracticaleffectsdifferencesapplicationspecificAdditionallydiscussbroaderapplicationsincludingcomplexstructuresdesignnovelproteinsAdvancesProteinStructurePrediction:ImplicationsCancerDrugDiscoveryDevelopmentartificialintelligence

Similar Articles

Cited By