Challenges in the Use of AI-Driven Non-Destructive Spectroscopic Tools for Rapid Food Analysis.

Wenyang Jia, Konstantia Georgouli, Jesus Martinez-Del Rincon, Anastasios Koidis
Author Information
  1. Wenyang Jia: Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK. ORCID
  2. Konstantia Georgouli: Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK.
  3. Jesus Martinez-Del Rincon: Institute of Electronics, Communications and Information Technology, Queen's University Belfast, Belfast BT3 9DT, UK. ORCID
  4. Anastasios Koidis: Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, UK. ORCID

Abstract

Routine, remote, and process analysis for foodstuffs is gaining attention and can provide more confidence for the food supply chain. A new generation of rapid methods is emerging both in the literature and in industry based on spectroscopy coupled with AI-driven modelling methods. Current published studies using these advanced methods are plagued by weaknesses, including sample size, abuse of advanced modelling techniques, and the process of validation for both the acquisition method and modelling. This paper aims to give a comprehensive overview of the analytical challenges faced in research and industrial settings where screening analysis is performed while providing practical solutions in the form of guidelines for a range of scenarios. After extended literature analysis, we conclude that there is no easy way to enhance the accuracy of the methods by using state-of-the-art modelling methods and the key remains that capturing good quality raw data from authentic samples in sufficient volume is very important along with robust validation. A comprehensive methodology involving suitable analytical techniques and interpretive modelling methods needs to be considered under a tailored experimental design whenever conducting rapid food analysis.

Keywords

References

  1. Foods. 2022 Dec 19;11(24): [PMID: 36553842]
  2. Front Plant Sci. 2022 Jul 07;13:867555 [PMID: 35873956]
  3. Food Res Int. 2015 Sep;75:270-280 [PMID: 28454957]
  4. Foods. 2021 Nov 11;10(11): [PMID: 34829048]
  5. Sensors (Basel). 2009;9(10):7771-7784 [PMID: 22408479]
  6. Food Res Int. 2023 Aug;170:113023 [PMID: 37316086]
  7. Anal Chim Acta. 2016 Mar 31;914:17-34 [PMID: 26965324]
  8. Appl Spectrosc. 2016 May;70(5):879-87 [PMID: 27006019]
  9. Foods. 2023 Mar 14;12(6): [PMID: 36981168]
  10. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Feb 15;227:117551 [PMID: 31677907]
  11. Anal Chim Acta. 2014 Feb 27;813:1-14 [PMID: 24528654]
  12. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2017 Feb;34(2):170-182 [PMID: 27841972]
  13. Meat Sci. 2021 Jun;176:108458 [PMID: 33647629]
  14. Sci Rep. 2019 Apr 5;9(1):5721 [PMID: 30952873]
  15. Food Chem. 2022 Nov 1;393:133377 [PMID: 35691070]
  16. Talanta. 2014 Jun;123:186-99 [PMID: 24725882]
  17. J Sci Food Agric. 2013 Jan 15;93(1):12-28 [PMID: 23070660]
  18. Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2203150119 [PMID: 36306328]
  19. Food Chem. 2017 Feb 15;217:735-742 [PMID: 27664692]
  20. Innovation (Camb). 2021 Oct 28;2(4):100179 [PMID: 34877560]
  21. Curr Res Food Sci. 2022 Jun 03;5:1017-1027 [PMID: 35755306]
  22. Front Microbiol. 2022 Nov 07;13:874658 [PMID: 36419427]
  23. Anal Chem. 1998 Aug 1;70(15):3198-201 [PMID: 21644658]
  24. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Nov 15;261:119989 [PMID: 34087771]
  25. J Sci Food Agric. 2018 Aug;98(11):4304-4311 [PMID: 29427329]
  26. Spectrochim Acta A Mol Biomol Spectrosc. 2020 Aug 15;237:118407 [PMID: 32361218]
  27. Anal Chim Acta. 2015 Sep 3;891:1-14 [PMID: 26388360]
  28. Food Chem. 2015 Nov 15;187:416-23 [PMID: 25977045]
  29. Food Chem. 2022 Feb 15;370:131047 [PMID: 34626928]
  30. Food Chem. 2015 May 1;174:226-32 [PMID: 25529674]
  31. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Oct 15;279:121479 [PMID: 35696971]
  32. Anal Chim Acta. 2009 Mar 9;635(2):121-31 [PMID: 19216869]
  33. Spectrochim Acta A Mol Biomol Spectrosc. 2018 Dec 5;205:479-488 [PMID: 30059874]
  34. Food Chem X. 2022 Oct 17;16:100472 [PMID: 36304207]
  35. Sensors (Basel). 2023 Oct 18;23(20): [PMID: 37896655]
  36. Appl Spectrosc. 2005 Jun;59(6):816-25 [PMID: 16053548]
  37. Food Chem. 2024 Apr 16;438:138029 [PMID: 38006696]
  38. Food Chem X. 2022 Aug 12;15:100430 [PMID: 36211751]
  39. J Chromatogr A. 2007 Jul 27;1158(1-2):196-214 [PMID: 17540392]
  40. Compr Rev Food Sci Food Saf. 2023 Nov;22(6):4957-4992 [PMID: 37823807]
  41. J Chromatogr A. 2016 Jan 8;1428:3-15 [PMID: 26363946]
  42. Food Chem. 2023 Dec 1;428:136798 [PMID: 37423106]
  43. Food Chem. 2020 Dec 1;332:127383 [PMID: 32615383]
  44. Food Chem. 2013 Feb 15;136(3-4):1444-52 [PMID: 23194547]
  45. Front Nutr. 2022 Jul 14;9:925717 [PMID: 35911115]
  46. Talanta. 2016 Aug 1;155:116-23 [PMID: 27216664]
  47. J Chromatogr A. 2000 Jun 9;881(1-2):93-104 [PMID: 10905696]
  48. Foods. 2022 Aug 08;11(15): [PMID: 35954142]
  49. Food Res Int. 2021 Sep;147:110577 [PMID: 34399549]
  50. Compr Rev Food Sci Food Saf. 2019 Nov;18(6):1793-1811 [PMID: 33336958]
  51. Sci Rep. 2022 Aug 10;12(1):13593 [PMID: 35948651]
  52. Foods. 2019 May 14;8(5): [PMID: 31091835]
  53. Anal Chim Acta. 2015 Sep 3;891:62-72 [PMID: 26388364]
  54. Foods. 2021 Feb 07;10(2): [PMID: 33562196]

Word Cloud

Created with Highcharts 10.0.0methodsmodellinganalysisvalidationprocessfoodrapidliteraturespectroscopyusingadvancedtechniquescomprehensiveanalyticalchallengesresearchguidelinesmethodologyRoutineremotefoodstuffsgainingattentioncanprovideconfidencesupplychainnewgenerationemergingindustrybasedcoupledAI-drivenCurrentpublishedstudiesplaguedweaknessesincludingsamplesizeabuseacquisitionmethodpaperaimsgiveoverviewfacedindustrialsettingsscreeningperformedprovidingpracticalsolutionsformrangescenariosextendedconcludeeasywayenhanceaccuracystate-of-the-artkeyremainscapturinggoodqualityrawdataauthenticsamplessufficientvolumeimportantalongrobustinvolvingsuitableinterpretiveneedsconsideredtailoredexperimentaldesignwheneverconductingChallengesUseAI-DrivenNon-DestructiveSpectroscopicToolsRapidFoodAnalysischemometrics

Similar Articles

Cited By