Mlp4green: A Binary Classification Approach Specifically for Green Odor.

Jiuliang Yang, Zhiming Qian, Yi He, Minghao Liu, Wannan Li, Weiwei Han
Author Information
  1. Jiuliang Yang: Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
  2. Zhiming Qian: Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
  3. Yi He: Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
  4. Minghao Liu: Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
  5. Wannan Li: Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
  6. Weiwei Han: Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. ORCID

Abstract

Fresh green leaves give off a smell known as "green odor." It has antibacterial qualities and can be used to attract or repel insects. However, a common method for evaluating green odor molecules has never existed. Machine learning techniques are widely used in research to forecast molecular attributes for binary classification. In this work, the green odor molecules were first trained and learned using machine learning methods, and then clustering analysis and molecular docking were performed to further explore their molecular characteristics and mechanisms of action. For comparison, four algorithmic models were employed, MLP performed the best in all metrics, including Accuracy, Precision, Average Precision, Matthews coefficient, and Area under curve. We determined by difference analysis that, in comparison to non-green odor molecules, green odor molecules have a lower molecular mass and fewer electrons. Based on the MLP algorithm, we constructed a binary classification prediction website for green odors. The first application of deep learning techniques to the study of green odor molecules can be seen as a signal of a new era in which green odor research has advanced into intelligence and standardization.

Keywords

References

  1. Chem Senses. 2019 Jan 1;44(1):11-22 [PMID: 30371751]
  2. Behav Brain Res. 2011 Oct 31;224(2):290-6 [PMID: 21684308]
  3. Horm Behav. 2010 Jul;58(2):264-72 [PMID: 20298694]
  4. J Chem Inf Model. 2021 Feb 22;61(2):676-688 [PMID: 33449694]
  5. Int J Mol Sci. 2023 Mar 15;24(6): [PMID: 36982668]
  6. Comput Struct Biotechnol J. 2023 Aug 25;21:4187-4195 [PMID: 37680266]
  7. Foods. 2022 Jul 09;11(14): [PMID: 35885276]
  8. EPMA J. 2023 Sep 12;14(4):601-612 [PMID: 38094576]
  9. J Agric Food Chem. 2005 Mar 9;53(5):1648-55 [PMID: 15740054]
  10. Front Med. 2022 Aug;16(4):659-660 [PMID: 35776406]
  11. Sci Rep. 2022 Aug 16;12(1):13863 [PMID: 35974078]
  12. Physiol Behav. 2004 Jan;80(4):481-8 [PMID: 14741233]
  13. Dermatol Ther. 2020 Nov;33(6):e13848 [PMID: 32543744]
  14. Chem Senses. 2005 Jan;30 Suppl 1:i268-9 [PMID: 15738150]
  15. J Am Soc Nephrol. 2019 Oct;30(10):1968-1979 [PMID: 31488607]
  16. JAMA Netw Open. 2021 Dec 1;4(12):e2136553 [PMID: 34913981]
  17. Biopsychosoc Med. 2008 Jan 15;2:2 [PMID: 18197969]
  18. J Agric Food Chem. 2002 Dec 18;50(26):7639-44 [PMID: 12475283]
  19. Chem Senses. 2002 Mar;27(3):225-30 [PMID: 11923185]
  20. J Biomol Struct Dyn. 2021 Oct;39(16):6031-6043 [PMID: 32696721]
  21. Int J Mol Sci. 2022 Aug 26;23(17): [PMID: 36077062]
  22. Sci Adv. 2018 Feb 09;4(2):eaao6086 [PMID: 29487905]
  23. Anal Chem. 2022 Oct 18;94(41):14135-14142 [PMID: 36209417]
  24. Biol Rev Camb Philos Soc. 2018 Feb;93(1):184-200 [PMID: 28480618]
  25. Cell Mol Life Sci. 2012 Jan;69(2):283-97 [PMID: 21671117]
  26. IEEE Trans Cybern. 2022 Aug 22;PP: [PMID: 35994540]
  27. Stat Med. 2018 Nov 30;37(27):3991-4006 [PMID: 29984411]
  28. J Cheminform. 2022 Dec 29;14(1):88 [PMID: 36581889]
  29. Neural Netw. 2022 Sep;153:496-517 [PMID: 35816861]
  30. Behav Res Methods. 2021 Feb;53(1):139-152 [PMID: 32632740]
  31. Environ Sci Technol. 2022 Feb 15;56(4):2572-2581 [PMID: 34968041]
  32. Front Mol Biosci. 2020 Jun 30;7:132 [PMID: 32714941]
  33. Science. 2023 Sep;381(6661):999-1006 [PMID: 37651511]
  34. Chem Rev. 2021 May 26;121(10):5633-5670 [PMID: 33979149]
  35. Front Cell Dev Biol. 2021 Aug 27;9:725568 [PMID: 34513847]
  36. J Chem Inf Model. 2023 Oct 23;63(20):6192-6197 [PMID: 37824704]
  37. Behav Brain Res. 2016 Jan 15;297:251-8 [PMID: 26475511]
  38. J Agric Food Chem. 2023 May 10;71(18):6789-6802 [PMID: 37102791]

Grants

  1. 20230508072RC/Science & Technology Development Project in Jilin Province of China

MeSH Term

Odorants
Molecular Docking Simulation
Smell
Algorithms
Machine Learning

Word Cloud

Created with Highcharts 10.0.0odorgreenmoleculesmolecularlearningbinaryclassificationcanusedtechniquesresearchfirstmachineanalysisdockingperformedcomparisonMLPPrecisionpredictionFreshleavesgivesmellknown"green"antibacterialqualitiesattractrepelinsectsHowevercommonmethodevaluatingneverexistedMachinewidelyforecastattributesworktrainedlearnedusingmethodsclusteringexplorecharacteristicsmechanismsactionfouralgorithmicmodelsemployedbestmetricsincludingAccuracyAverageMatthewscoefficientAreacurvedetermineddifferencenon-greenlowermassfewerelectronsBasedalgorithmconstructedwebsiteodorsapplicationdeepstudyseensignalneweraadvancedintelligencestandardizationMlp4green:BinaryClassificationApproachSpecificallyGreenOdor

Similar Articles

Cited By