Evaluating ChatGPT-4.0's data analytic proficiency in epidemiological studies: A comparative analysis with SAS, SPSS, and R.

Yeen Huang, Ruipeng Wu, Juntao He, Yingping Xiang
Author Information
  1. Yeen Huang: School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
  2. Ruipeng Wu: Key Laboratory for Molecular Genetic Mechanisms and Intervention Research, On High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Xizang, China.
  3. Juntao He: Physical and Chemical Testing Institute, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China.
  4. Yingping Xiang: Occupational Hazard Assessment Institute, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China.

Abstract

Background: OpenAI's Chat Generative Pre-trained Transformer 4.0 (ChatGPT-4), an emerging artificial intelligence (AI)-based large language model (LLM), has been receiving increasing attention from the medical research community for its innovative 'Data Analyst' feature. We aimed to compare the capabilities of ChatGPT-4 against traditional biostatistical software (i.e. SAS, SPSS, R) in statistically analysing epidemiological research data.
Methods: We used a data set from the China Health and Nutrition Survey, comprising 9317 participants and 29 variables (e.g. gender, age, educational level, marital status, income, occupation, weekly working hours, survival status). Two researchers independently evaluated the data analysis capabilities of GPT-4's 'Data Analyst' feature against SAS, SPSS, and R across three commonly used epidemiological analysis methods: Descriptive statistics, intergroup analysis, and correlation analysis. We used an internally developed evaluation scale to assess and compare the consistency of results, analytical efficiency of coding or operations, user-friendliness, and overall performance between ChatGPT-4, SAS, SPSS, and R.
Results: In descriptive statistics, ChatGPT-4 showed high consistency of results, greater analytical efficiency of code or operations, and more intuitive user-friendliness compared to SAS, SPSS, and R. In intergroup comparisons and correlational analyses, despite minor discrepancies in statistical outcomes for certain analysis tasks with SAS, SPSS, and R, ChatGPT-4 maintained high analytical efficiency and exceptional user-friendliness. Thus, employing ChatGPT-4 can significantly lower the operational threshold for conducting epidemiological data analysis while maintaining consistency with traditional biostatistical software's outcome, requiring only specific, clear analysis instructions without any additional operations or code writing.
Conclusions: We found ChatGPT-4 to be a powerful auxiliary tool for statistical analysis in epidemiological research. However, it showed limitations in result consistency and in applying more advanced statistical methods. Therefore, we advocate for the use of ChatGPT-4 in supporting researchers with intermediate experience in data analysis. With AI technologies like LLMs advancing rapidly, their integration with data analysis platforms promises to lower operational barriers, thereby enabling researchers to dedicate greater focus to the nuanced interpretation of analysis results. This development is likely to significantly advance epidemiological and medical research.

References

  1. J Minim Invasive Surg. 2023 Dec 15;26(4):167-175 [PMID: 38098348]
  2. Nature. 2023 Nov;623(7987):474-477 [PMID: 37968523]
  3. Radiology. 2023 Oct;309(1):e231147 [PMID: 37815442]
  4. Front Artif Intell. 2024 Jan 05;6:1270749 [PMID: 38249789]
  5. Cureus. 2021 Jan 11;13(1):e12639 [PMID: 33585125]
  6. J Med Syst. 2023 Mar 04;47(1):33 [PMID: 36869927]
  7. Clin Exp Hypertens. 2024 Dec 31;46(1):2303999 [PMID: 38264971]
  8. Disabil Rehabil. 2001 Nov 10;23(16):693-7 [PMID: 11732558]
  9. JMIR Med Educ. 2023 Sep 14;9:e47049 [PMID: 37707884]
  10. J Med Internet Res. 2023 Oct 4;25:e50638 [PMID: 37792434]
  11. Eur Urol. 2024 Feb;85(2):146-153 [PMID: 37926642]
  12. Disabil Rehabil. 1999 Apr;21(4):145-51 [PMID: 10390080]
  13. Crit Care. 2023 Feb 25;27(1):75 [PMID: 36841840]
  14. Behav Res Methods. 2023 Sep;55(6):2813-2837 [PMID: 35953660]
  15. J Glob Health. 2023 Feb 17;13:01003 [PMID: 36798998]
  16. Environ Int. 2023 May;175:107953 [PMID: 37156055]
  17. Lancet Infect Dis. 2024 Mar;24(3):e155 [PMID: 38242141]
  18. Sci Rep. 2024 Feb 2;14(1):2781 [PMID: 38308014]
  19. Brief Bioinform. 2011 Nov;12(6):634-44 [PMID: 21498550]
  20. Cell Rep Med. 2024 Jan 16;5(1):101356 [PMID: 38232690]
  21. Methods. 2024 Feb;222:133-141 [PMID: 38242382]
  22. JAAD Int. 2023 Oct 08;14:22-23 [PMID: 38054196]
  23. Clin Gastroenterol Hepatol. 2023 Oct 19;: [PMID: 37863408]
  24. BMC Med Res Methodol. 2023 Nov 4;23(1):258 [PMID: 37925415]
  25. Urol Pract. 2023 Sep;10(5):436-443 [PMID: 37410015]
  26. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  27. NPJ Digit Med. 2023 Nov 16;6(1):210 [PMID: 37973919]
  28. Comput Biol Med. 1990;20(6):445-64 [PMID: 2286079]
  29. PLoS Comput Biol. 2007 Nov;3(11):e199 [PMID: 18052533]
  30. Nat Protoc. 2024 Mar;19(3):831-895 [PMID: 38135744]
  31. Disabil Rehabil. 1998 Apr;20(4):121-6 [PMID: 9571378]
  32. Int J Impot Res. 2023 Nov 20;: [PMID: 37985815]
  33. Reprod Biomed Online. 2023 Jul;47(1):3-9 [PMID: 37142479]
  34. Nature. 2023 Dec;624(7992):509 [PMID: 38093061]
  35. Bioinformatics. 2024 Feb 1;40(2): [PMID: 38290765]
  36. Arch Med Res. 2023 Apr;54(3):272-274 [PMID: 36990890]
  37. BMJ. 2024 Jan 31;384:e077192 [PMID: 38296328]
  38. Seizure. 2024 Jan;114:1-8 [PMID: 38007922]
  39. J Med Internet Res. 2023 May 31;25:e46924 [PMID: 37256685]
  40. Lancet Reg Health West Pac. 2023 Sep 15;41:100905 [PMID: 37731897]
  41. Am J Orthod Dentofacial Orthop. 2024 Feb 1;: [PMID: 38300168]
  42. Psychiatry Res. 2024 Mar;333:115667 [PMID: 38290286]
  43. Diabetes Metab Syndr. 2023 Apr;17(4):102744 [PMID: 36989584]
  44. Disabil Rehabil. 2000 Dec 15;22(18):813-9 [PMID: 11197517]
  45. NPJ Digit Med. 2023 Mar 10;6(1):37 [PMID: 36899082]
  46. PLOS Digit Health. 2023 Feb 9;2(2):e0000198 [PMID: 36812645]
  47. Lancet. 2023 Nov;402 Suppl 1:S99 [PMID: 37997146]

MeSH Term

Humans
Artificial Intelligence
Data Science
Epidemiologic Studies
Research Design
Biomedical Research

Word Cloud

Created with Highcharts 10.0.0analysisChatGPT-4dataSASSPSSRepidemiologicalresearchconsistencyusedresearchersresultsanalyticalefficiencyoperationsuser-friendlinessstatisticalAImedical'DataAnalyst'featurecomparecapabilitiestraditionalbiostatisticalestatusstatisticsintergroupshowedhighgreatercodesignificantlyloweroperationalBackground:OpenAI'sChatGenerativePre-trainedTransformer40emergingartificialintelligence-basedlargelanguagemodelLLMreceivingincreasingattentioncommunityinnovativeaimedsoftwareistatisticallyanalysingMethods:setChinaHealthNutritionSurveycomprising9317participants29variablesggenderageeducationallevelmaritalincomeoccupationweeklyworkinghourssurvivalTwoindependentlyevaluatedGPT-4'sacrossthreecommonlymethods:DescriptivecorrelationinternallydevelopedevaluationscaleassesscodingoverallperformanceResults:descriptiveintuitivecomparedcomparisonscorrelationalanalysesdespiteminordiscrepanciesoutcomescertaintasksmaintainedexceptionalThusemployingcanthresholdconductingmaintainingsoftware'soutcomerequiringspecificclearinstructionswithoutadditionalwritingConclusions:foundpowerfulauxiliarytoolHoweverlimitationsresultapplyingadvancedmethodsThereforeadvocateusesupportingintermediateexperiencetechnologieslikeLLMsadvancingrapidlyintegrationplatformspromisesbarrierstherebyenablingdedicatefocusnuancedinterpretationdevelopmentlikelyadvanceEvaluating0'sanalyticproficiencystudies:comparative

Similar Articles

Cited By