Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models.

Yucai Shao, Andrew F Magee, Tetyana I Vasylyeva, Marc A Suchard
Author Information
  1. Yucai Shao: Department of Biostatistics, University of California, Los Angeles, California, United States of America. ORCID
  2. Andrew F Magee: Department of Biomathematics, University of California, Los Angeles, California, United States of America.
  3. Tetyana I Vasylyeva: Department of Medicine, University of California San Diego, La Jolla, California, United States of America.
  4. Marc A Suchard: Department of Biostatistics, University of California, Los Angeles, California, United States of America. ORCID

Abstract

Birth-death models play a key role in phylodynamic analysis for their interpretation in terms of key epidemiological parameters. In particular, models with piecewise-constant rates varying at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS) models, are valuable for their reflection of changing transmission dynamics over time. A challenge, however, that persists with current time-varying model inference procedures is their lack of computational efficiency. This limitation hinders the full utilization of these models in large-scale phylodynamic analyses, especially when dealing with high-dimensional parameter vectors that exhibit strong correlations. We present here a linear-time algorithm to compute the gradient of the birth-death model sampling density with respect to all time-varying parameters, and we implement this algorithm within a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference under a wide variety of structures of, as well as priors for, EBDS processes. We assess this approach using three different real world data examples, including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of our implementation in both allowing for flexible prior choices and in modeling the transmission dynamics of various pathogens by accurately capturing the changing trend of viral effective reproductive number.

References

  1. Nature. 2003 Mar 27;422(6930):428-33 [PMID: 12660783]
  2. PLoS Comput Biol. 2020 Oct 12;16(10):e1007774 [PMID: 33044955]
  3. Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2119513119 [PMID: 35994663]
  4. Syst Biol. 2023 Nov 1;72(5):1136-1153 [PMID: 37458991]
  5. Viruses. 2020 Apr 20;12(4): [PMID: 32326127]
  6. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4488-93 [PMID: 27035948]
  7. Syst Biol. 2010 Dec;59(6):619-33 [PMID: 20884813]
  8. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16327-32 [PMID: 21930899]
  9. Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2208851120 [PMID: 36757894]
  10. Syst Biol. 2019 Nov 1;68(6):1052-1061 [PMID: 31034053]
  11. PLoS Comput Biol. 2019 Apr 5;15(4):e1006955 [PMID: 30951528]
  12. Epidemics. 2015 Dec;13:44-55 [PMID: 26616041]
  13. Syst Biol. 2019 Jan 1;68(1):78-92 [PMID: 29931325]
  14. Wellcome Open Res. 2020 Mar 30;5:53 [PMID: 32923688]
  15. Virus Evol. 2018 Jun 08;4(1):vey016 [PMID: 29942656]
  16. Mol Biol Evol. 2022 Aug 3;39(8): [PMID: 35816422]
  17. Syst Biol. 2016 Jul;65(4):726-36 [PMID: 27235697]
  18. J Mol Evol. 1985;22(2):160-74 [PMID: 3934395]
  19. PLoS Curr. 2014 Oct 06;6: [PMID: 25642370]
  20. Mol Biol Evol. 2006 Jan;23(1):7-9 [PMID: 16177232]
  21. Mol Biol Evol. 2020 Aug 1;37(8):2414-2429 [PMID: 32003829]
  22. PLoS Comput Biol. 2019 Apr 8;15(4):e1006650 [PMID: 30958812]
  23. Nature. 2008 May 29;453(7195):615-9 [PMID: 18418375]
  24. Nat Rev Genet. 2022 Sep;23(9):547-562 [PMID: 35459859]
  25. Syst Biol. 2023 Dec 30;72(6):1387-1402 [PMID: 37703335]
  26. Microorganisms. 2021 Jul 02;9(7): [PMID: 34361868]
  27. Mol Biol Evol. 2020 Oct 1;37(10):3047-3060 [PMID: 32458974]
  28. Syst Biol. 2020 Sep 1;69(5):973-986 [PMID: 32105322]
  29. PLoS Biol. 2006 May;4(5):e88 [PMID: 16683862]
  30. PLoS Comput Biol. 2020 Oct 28;16(10):e1007999 [PMID: 33112848]
  31. Nature. 2017 Apr 20;544(7650):309-315 [PMID: 28405027]
  32. PLoS Comput Biol. 2014 Dec 04;10(12):e1003919 [PMID: 25474353]
  33. Sci Rep. 2016 Dec 05;6:38100 [PMID: 27917890]
  34. J Mol Evol. 1994 Sep;39(3):306-14 [PMID: 7932792]
  35. PLoS One. 2014 Jan 06;9(1):e84184 [PMID: 24400082]
  36. Infect Genet Evol. 2023 Jun;110:105424 [PMID: 36913995]
  37. Syst Biol. 2018 Nov 1;67(6):940-964 [PMID: 29438538]
  38. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):228-33 [PMID: 23248286]
  39. Syst Biol. 2021 Dec 16;71(1):172-189 [PMID: 34165577]
  40. Mol Biol Evol. 2023 Nov 3;40(11): [PMID: 37950885]
  41. Mol Biol Evol. 1997 Jul;14(7):717-24 [PMID: 9214744]
  42. PLoS Negl Trop Dis. 2014 Apr 17;8(4):e2769 [PMID: 24743730]
  43. Nature. 2020 Apr;580(7804):502-505 [PMID: 32322065]
  44. Theor Popul Biol. 2013 Dec;90:113-28 [PMID: 24157567]
  45. Bayesian Anal. 2023 Jun;18(2):367-390 [PMID: 38770434]
  46. Syst Biol. 2007 Oct;56(5):701-10 [PMID: 17849325]
  47. Emerg Infect Dis. 2016 Feb;22(2):169-77 [PMID: 26811980]
  48. J Theor Biol. 2010 Dec 7;267(3):396-404 [PMID: 20851708]

Grants

  1. R01 AI153044/NIAID NIH HHS
  2. R01 AI162611/NIAID NIH HHS
  3. U19 AI135995/NIAID NIH HHS

MeSH Term

Humans
Influenza A Virus, H3N2 Subtype
Algorithms
Influenza, Human
Epidemics
Hemorrhagic Fever, Ebola
Monte Carlo Method

Word Cloud

Created with Highcharts 10.0.0modelsphylodynamicdynamicsinferencesamplingkeyparametersdifferenttimeepisodicbirth-death-samplingEBDSchangingtransmissiontime-varyingmodelcomputationalefficiencyalgorithmHamiltonianMonteCarloHMCapproacheffectiveBirth-deathplayroleanalysisinterpretationtermsepidemiologicalparticularpiecewise-constantratesvaryingepochsrefervaluablereflectionchallengehoweverpersistscurrentprocedureslacklimitationhindersfullutilizationlarge-scaleanalysesespeciallydealinghigh-dimensionalparametervectorsexhibitstrongcorrelationspresentlinear-timecomputegradientbirth-deathdensityrespectimplementwithingradient-basedsampleralleviateburdenconductingwidevarietystructureswellpriorsprocessesassessusingthreerealworlddataexamplesincludingHIVepidemicOdesaUkraineseasonalinfluenzaA/H3N2virusNewYorkstateAmericaEbolaoutbreakWestAfricaexhibitssubstantialboostdelivering10-200-foldincreaseminimumsamplesizeperunit-timecomparisonMetropolis-Hastings-basedAdditionallyshowrobustnessimplementationallowingflexiblepriorchoicesmodelingvariouspathogensaccuratelycapturingtrendviralreproductivenumberScalablegradientsenable

Similar Articles

Cited By