Quercetin prophylaxis protects the kidneys by modulating the renin-angiotensin-aldosterone axis under acute hypobaric hypoxic stress.

Vaishnavi Rathi, Sarada S K Sagi, Amit Kumar Yadav, Manoj Kumar, Rajeev Varshney
Author Information
  1. Vaishnavi Rathi: Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India.
  2. Sarada S K Sagi: Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India. saradasurya38@gmail.com.
  3. Amit Kumar Yadav: Department of Biophysics, All India Institute of Medical Science, Delhi, India.
  4. Manoj Kumar: Department of Biophysics, All India Institute of Medical Science, Delhi, India.
  5. Rajeev Varshney: Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India.

Abstract

The study presented here aims at assessing the effects of hypobaric hypoxia on RAAS pathway and its components along with mitigation of anomalies with quercetin prophylaxis. One hour prior to hypobaric hypoxia exposure, male SD rats were orally supplemented with quercetin (50 mg/kg BW) and acetazolamide (50 mg/kg BW) and exposed them to 25,000 ft. (7,620 m) in a simulated environmental chamber for 12 h at 25 ± 2 °C. Different biochemical parameters like renin activity, aldosterone, angiotensin I, ACE 2 were determined in plasma. As a conventional response to low oxygen conditions, oxidative stress parameters (ROS and MDA) were elevated along with suppressed antioxidant system (GPx and catalase) in plasma of rats. Quercetin prophylaxis significantly down regulated the hypoxia induced oxidative stress by reducing plasma ROS & MDA levels with efficient enhancement of antioxidants (GPx and Catalase). Further, hypoxia mediated regulation of renin and ACE 2 proves the outstanding efficacy of quercetin in repudiating altercations in RAAS cascade due to hypobaric hypoxia. Furthermore, differential protein expression of HIF-1α, NFκB, IL-18 and endothelin-1 analyzed by western blotting approves the biochemical outcomes and showed that quercetin significantly aids in the reduction of inflammation under hypoxia. Studies conducted with Surface Plasmon Resonance demonstrated a binding among quercetin and ACE 2 that indicates that this flavonoid might regulate RAAS pathway via ACE 2. Henceforth, the study promotes the prophylaxis of quercetin for the better adaptability under hypobaric hypoxic conditions via modulating the RAAS pathway.

References

  1. Evid Based Complement Alternat Med. 2012;2012:485262 [PMID: 23304202]
  2. Front Physiol. 2022 Oct 20;13:969456 [PMID: 36338473]
  3. Mol Biol Rep. 2016 Feb;43(2):99-105 [PMID: 26748999]
  4. Am J Physiol Heart Circ Physiol. 2015 Jun 15;308(12):H1540-6 [PMID: 25888515]
  5. J Am Coll Cardiol. 2002 Feb 20;39(4):683-8 [PMID: 11849869]
  6. Molecules. 2022 Feb 08;27(3): [PMID: 35164411]
  7. Eur Respir J. 1998 Dec;12(6):1242-7 [PMID: 9877470]
  8. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  9. Blood Press. 2016;25(1):51-7 [PMID: 26434759]
  10. J Appl Physiol (1985). 1988 Nov;65(5):1957-61 [PMID: 2850290]
  11. Hypertension. 2000 Oct;36(4):631-7 [PMID: 11040249]
  12. Endocrinology. 2011 Apr;152(4):1582-8 [PMID: 21303953]
  13. J Appl Physiol (1985). 1993 Jun;74(6):2795-800 [PMID: 8365983]
  14. Planta Med. 2015 Jun;81(8):670-8 [PMID: 25519917]
  15. J Neurosci Res. 2008 Feb 1;86(2):403-10 [PMID: 17929310]
  16. Molecules. 2018 Oct 08;23(10): [PMID: 30297621]
  17. J Physiol. 2017 Mar 1;595(5):1619-1626 [PMID: 27966225]
  18. Hypertension. 2006 Mar;47(3):515-21 [PMID: 16365192]
  19. Aviat Space Environ Med. 2003 May;74(5):533-6 [PMID: 12751582]
  20. Clin Chem. 1988 Dec;34(12):2433-8 [PMID: 3197281]
  21. Am J Ther. 2006 May-Jun;13(3):229-35 [PMID: 16772765]
  22. Anal Biochem. 1983 Oct 1;134(1):111-6 [PMID: 6660480]
  23. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):320-3 [PMID: 6277835]
  24. ACS Cent Sci. 2020 Mar 25;6(3):315-331 [PMID: 32226821]
  25. Front Physiol. 2020 Jul 16;11:756 [PMID: 32765289]
  26. Protoplasma. 2015 Jan;252(1):209-17 [PMID: 25000991]
  27. Bio Protoc. 2019 Jun 20;9(12):e3263 [PMID: 33654783]
  28. Biochim Biophys Acta. 2012 Oct;1820(10):1693-703 [PMID: 22728154]
  29. Respir Physiol Neurobiol. 2007 Sep 30;158(2-3):204-11 [PMID: 17597013]
  30. High Alt Med Biol. 2012 Jun;13(2):82-92 [PMID: 22724610]
  31. Biomed Pharmacother. 2017 Oct;94:317-325 [PMID: 28772209]
  32. Free Radic Biol Med. 2015 Oct;87:84-97 [PMID: 26117330]
  33. Biomedicines. 2020 May 21;8(5): [PMID: 32455629]
  34. Circulation. 2007 Nov 6;116(19):2191-202 [PMID: 17984389]
  35. J Physiol. 2016 Nov 1;594(21):6225-6240 [PMID: 27435894]
  36. PLoS One. 2023 Feb 24;18(2):e0279304 [PMID: 36827356]
  37. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  38. Hypertension. 2011 Feb;57(2):314-22 [PMID: 21189404]
  39. Antioxid Redox Signal. 2011 Oct 1;15(7):1957-97 [PMID: 21087145]
  40. Front Physiol. 2017 Oct 04;8:752 [PMID: 29046642]
  41. Circ Res. 2000 Sep 1;87(5):E1-9 [PMID: 10969042]
  42. Contrib Nephrol. 2004;143:77-89 [PMID: 15248357]
  43. J Food Prot. 2018 Jan;81(1):68-78 [PMID: 29271686]
  44. Cancers (Basel). 2020 Aug 06;12(8): [PMID: 32781581]
  45. Int J Nanomedicine. 2017 Jan 05;12:327-345 [PMID: 28115850]
  46. Mol Nutr Food Res. 2018 Mar;62(5): [PMID: 29266790]
  47. Eur Respir J. 2012 Dec;40(6):1401-9 [PMID: 22523353]
  48. Urology. 2000 Aug 1;56(2):346-51 [PMID: 10925121]
  49. Methods. 2016 Oct 15;109:3-11 [PMID: 27302663]
  50. Brain Behav Immun. 2018 Mar;69:167-179 [PMID: 29155324]
  51. Biosensors (Basel). 2016 Feb 25;6(1): [PMID: 26927197]
  52. J Appl Physiol (1985). 2007 Apr;102(4):1313-22 [PMID: 17023566]
  53. J Lab Clin Med. 2003 Aug;142(2):106-12 [PMID: 12960957]
  54. High Alt Med Biol. 2021 Mar;22(1):5-13 [PMID: 32975448]
  55. J Pak Med Assoc. 1996 Jun;46(6):128-31 [PMID: 8991369]
  56. PLoS One. 2012;7(4):e34747 [PMID: 22523556]
  57. J Biol Chem. 2000 Oct 27;275(43):33238-43 [PMID: 10924499]
  58. Phytother Res. 2020 Dec;34(12):3085-3088 [PMID: 33000510]
  59. Curr Med Chem. 2019;26(27):5152-5164 [PMID: 28971760]
  60. Front Med (Lausanne). 2021 Jul 22;8:681473 [PMID: 34368187]
  61. Biomed Pharmacother. 2021 Sep;141:111867 [PMID: 34229245]
  62. Int J Inflam. 2014;2014:689360 [PMID: 24804145]
  63. Ren Physiol Biochem. 1995 May-Jun;18(3):153-60 [PMID: 7542795]

MeSH Term

Rats
Male
Animals
Quercetin
Renin
Catalase
Aldosterone
Rats, Sprague-Dawley
Reactive Oxygen Species
Hypoxia
Antioxidants
Oxidative Stress
Angiotensin I
Kidney

Chemicals

Quercetin
Renin
Catalase
Aldosterone
Reactive Oxygen Species
Antioxidants
Angiotensin I

Word Cloud

Created with Highcharts 10.0.0hypoxiaquercetinhypobaricRAASprophylaxisACE2pathwayplasmastressstudyalongrats50 mg/kgBWbiochemicalparametersreninconditionsoxidativeROSMDAGPxQuercetinsignificantlyviahypoxicmodulatingpresentedaimsassessingeffectscomponentsmitigationanomaliesOnehourpriorexposuremaleSDorallysupplementedacetazolamideexposed25000ft7620 msimulatedenvironmentalchamber12 h25 ± 2 °CDifferentlikeactivityaldosteroneangiotensindeterminedconventionalresponselowoxygenelevatedsuppressedantioxidantsystemcatalaseregulatedinducedreducing&levelsefficientenhancementantioxidantsCatalasemediatedregulationprovesoutstandingefficacyrepudiatingaltercationscascadedueFurthermoredifferentialproteinexpressionHIF-1αNFκBIL-18endothelin-1analyzedwesternblottingapprovesoutcomesshowedaidsreductioninflammationStudiesconductedSurfacePlasmonResonancedemonstratedbindingamongindicatesflavonoidmightregulateHenceforthpromotesbetteradaptabilityprotectskidneysrenin-angiotensin-aldosteroneaxisacute

Similar Articles

Cited By