Obesity-related indicators and tuberculosis: A Mendelian randomization study.

Nuannuan Cai, Weiyan Luo, Lili Ding, Lijin Chen, Yuanjiang Huang
Author Information
  1. Nuannuan Cai: Pulmonary and Critical Care Medicine, Hainan Provincial People's Hospital, Haikou, Hainan, China.
  2. Weiyan Luo: Pulmonary and Critical Care Medicine, Hainan Provincial People's Hospital, Haikou, Hainan, China.
  3. Lili Ding: Pulmonary and Critical Care Medicine, Hainan Provincial People's Hospital, Haikou, Hainan, China.
  4. Lijin Chen: Pulmonary and Critical Care Medicine, Hainan Provincial People's Hospital, Haikou, Hainan, China.
  5. Yuanjiang Huang: Infectious and Tropical Disease Dept (Tuberculosis), The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China. ORCID

Abstract

PURPOSE: obesity is a strong risk factor for many diseases, with controversy regarding the cause(s) of tuberculosis (TB) reflected by contradictory findings. Therefore, a larger sample population is required to determine the relationship between obesity and TB, which may further inform treatment.
METHODS: obesity-related indicators and TB mutation data were obtained from a genome-wide association study database, while representative instrumental variables (IVs) were obtained by screening and merging. Causal relationships between exposure factors and outcomes were determined using two-sample Mendelian randomization (MR) analysis. Three tests were used to determine the representativeness and stability of the IVs, supported by sensitivity analysis.
RESULTS: Initially, 191 single nucleotide polymorphisms were designated as IVs by screening, followed by two-sample MR analysis, which revealed the causal relationship between waist circumference [odds ratio (OR): 2.13 (95% confidence interval (CI): 1.19-3.80); p = 0.011] and TB. Sensitivity analysis verified the credibility of the IVs, none of which were heterogeneous or horizontally pleiotropic.
CONCLUSION: The present study determined the causal effect between waist circumference and TB by two-sample MR analysis and found both to be likely to be potential risk factors.

References

  1. Am J Trop Med Hyg. 2019 May;100(5):1141-1144 [PMID: 30915957]
  2. PLoS Negl Trop Dis. 2020 Nov 30;14(11):e0008894 [PMID: 33253150]
  3. Front Microbiol. 2017 Mar 06;8:315 [PMID: 28321208]
  4. Cell Mol Immunol. 2019 Mar;16(3):275-287 [PMID: 30886421]
  5. Stat Med. 2016 May 20;35(11):1880-906 [PMID: 26661904]
  6. Infect Dis (Auckl). 2021 Feb 24;14:1178633721994607 [PMID: 33716508]
  7. Nutrients. 2020 Feb 18;12(2): [PMID: 32085433]
  8. Nat Commun. 2018 Jul 27;9(1):2941 [PMID: 30054458]
  9. Nature. 2015 Feb 12;518(7538):187-196 [PMID: 25673412]
  10. Mar Drugs. 2019 Jul 09;17(7): [PMID: 31323977]
  11. Am J Transl Res. 2017 Aug 15;9(8):3623-3632 [PMID: 28861153]
  12. Nat Rev Endocrinol. 2018 Feb;14(2):88-98 [PMID: 29219149]
  13. Arch Med Sci. 2018 Oct;14(6):1361-1373 [PMID: 30393491]
  14. Front Endocrinol (Lausanne). 2018 Apr 20;9:167 [PMID: 29731737]
  15. Am J Epidemiol. 2013 Oct 1;178(7):1177-84 [PMID: 23863760]
  16. J Clin Tuberc Other Mycobact Dis. 2020 May 05;20:100163 [PMID: 32420460]
  17. Sci Rep. 2020 Oct 15;10(1):17475 [PMID: 33060734]
  18. PLoS One. 2018 Apr 18;13(4):e0195104 [PMID: 29668698]
  19. Int J Mol Sci. 2020 Apr 15;21(8): [PMID: 32326381]
  20. Front Microbiol. 2020 Sep 03;11:573586 [PMID: 33013810]
  21. Elife. 2018 May 30;7: [PMID: 29846171]
  22. Nat Genet. 2018 Jul;50(7):906-908 [PMID: 29892013]
  23. Int J Infect Dis. 2021 Aug;109:168-173 [PMID: 34217872]
  24. Genome Med. 2015 Oct 08;7:103 [PMID: 26449484]
  25. Diabetes Care. 2019 Jan;42(1):126-133 [PMID: 30352893]
  26. Diabetes. 2015 May;64(5):1841-52 [PMID: 25712996]
  27. Cardiovasc Diabetol. 2017 Apr 11;16(1):47 [PMID: 28399917]
  28. J Diabetes Investig. 2017 Mar;8(2):168-173 [PMID: 27589681]
  29. Sci Rep. 2019 Jul 29;9(1):10912 [PMID: 31358794]
  30. Cells. 2021 Jul 08;10(7): [PMID: 34359902]
  31. J Public Health Res. 2021 Mar 15;10(1): [PMID: 33849253]
  32. J Gen Intern Med. 2016 Sep;31(9):1011-8 [PMID: 27197973]
  33. Int J Epidemiol. 2011 Apr;40(2):470-8 [PMID: 21078622]
  34. J Clin Endocrinol Metab. 2013 Apr;98(4):E801-6 [PMID: 23457408]
  35. PLoS Pathog. 2019 Sep 26;15(9):e1008050 [PMID: 31557262]
  36. PLoS Med. 2018 Aug 28;15(8):e1002641 [PMID: 30153260]
  37. Int J Environ Res Public Health. 2019 Sep 25;16(19): [PMID: 31557874]
  38. Sci Rep. 2016 Jan 20;6:17958 [PMID: 26785701]
  39. Infect Control Hosp Epidemiol. 2019 Jun;40(6):701-704 [PMID: 31012401]
  40. Cardiovasc Diabetol. 2021 May 10;20(1):104 [PMID: 33971883]
  41. Mol Cells. 2012 Jun;33(6):533-7 [PMID: 22526397]
  42. Cell Death Dis. 2021 Oct 14;12(10):946 [PMID: 34650054]
  43. Int J Tuberc Lung Dis. 2018 Apr 1;22(4):358-365 [PMID: 29562981]
  44. Mol Med. 2017 Feb;22:873-885 [PMID: 27878212]
  45. Clin Exp Immunol. 2010 Aug;161(2):250-67 [PMID: 20491795]
  46. Front Genet. 2020 Dec 21;11:597420 [PMID: 33408737]
  47. Front Psychiatry. 2019 Jul 25;10:527 [PMID: 31404145]
  48. Mol Cell Biol. 2016 Jul 29;36(16):2168-81 [PMID: 27215388]
  49. Nutrients. 2022 Sep 02;14(17): [PMID: 36079890]
  50. Am J Transl Res. 2021 Jun 15;13(6):6855-6863 [PMID: 34306436]
  51. Elife. 2020 May 19;9: [PMID: 32427102]
  52. Mol Genet Genomics. 2021 May;296(3):605-613 [PMID: 33629185]
  53. Int J Mol Sci. 2017 Feb 08;18(2): [PMID: 28208746]
  54. Biomed Res Int. 2019 Jun 11;2019:2579734 [PMID: 31312655]
  55. Korean J Radiol. 2014 Sep-Oct;15(5):651-4 [PMID: 25246828]
  56. Front Cell Infect Microbiol. 2019 Mar 28;9:78 [PMID: 30984627]
  57. Eur Heart J. 2020 Sep 14;41(35):3314-3322 [PMID: 32357239]
  58. Front Cell Infect Microbiol. 2020 Oct 22;10:563850 [PMID: 33194802]
  59. Front Immunol. 2017 Apr 13;8:435 [PMID: 28450867]
  60. Geroscience. 2021 Jun;43(3):1465-1479 [PMID: 33449308]
  61. Nat Genet. 2019 Feb;51(2):237-244 [PMID: 30643251]
  62. Nature. 2015 Feb 12;518(7538):197-206 [PMID: 25673413]

MeSH Term

Humans
Genome-Wide Association Study
Mendelian Randomization Analysis
Obesity
Tuberculosis
Risk Factors
Polymorphism, Single Nucleotide

Word Cloud

Created with Highcharts 10.0.0TBanalysisIVsstudytwo-sampleMRriskdeterminerelationshipObesity-relatedindicatorsobtainedscreeningfactorsdeterminedMendelianrandomizationcausalwaistcircumference:PURPOSE:ObesitystrongfactormanydiseasescontroversyregardingcausestuberculosisreflectedcontradictoryfindingsThereforelargersamplepopulationrequiredobesitymayinformtreatmentMETHODS:mutationdatagenome-wideassociationdatabaserepresentativeinstrumentalvariablesmergingCausalrelationshipsexposureoutcomesusingThreetestsusedrepresentativenessstabilitysupportedsensitivityRESULTS:Initially191singlenucleotidepolymorphismsdesignatedfollowedrevealed[oddsratioOR21395%confidenceintervalCI119-380p=0011]SensitivityverifiedcredibilitynoneheterogeneoushorizontallypleiotropicCONCLUSION:presenteffectfoundlikelypotentialtuberculosis:

Similar Articles

Cited By (1)