Computational screening of damaging nsSNPs in human SOD1 genes associated with amyotrophic lateral sclerosis identifies destabilising effects of G38R and G42D mutations through in silico evaluation.

Samiksha Bhor, Sadia Haque Tonny, Susha Dinesh, Sameer Sharma
Author Information
  1. Samiksha Bhor: Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India. ORCID
  2. Sadia Haque Tonny: Department of Plant Pathology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh.
  3. Susha Dinesh: Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India. ORCID
  4. Sameer Sharma: Department of Bioinformatics, BioNome, Bengaluru, Karnataka 560043 India. ORCID

Abstract

Amyotrophic lateral sclerosis (ALS), a complicated neurodegenerative disorder affected by hereditary and environmental variables, is a condition. In this study, the genetic makeup of ALS is investigated, with a focus on the SOD1 gene's single-nucleotide polymorphisms (SNPs) and their ability to affect disease risk. Eleven high-risk missense variations that may impair the functionality of the SOD1 protein were discovered after a thorough examination of SNPs in the SOD1 gene. These mutations were chosen using a variety of prediction approaches, highlighting their importance in the aetiology of ALS. Notably, it was discovered that the stability of the SOD1 wild-type protein structure was compromised by the G38R and G42D SOD1 variants. Additionally, Edaravone, a possible ALS medication, showed a greater affinity for binding mutant SOD1 structures, pointing to potential personalised treatment possibilities. The high-risk SNPs discovered in this investigation seem to have functional effects, especially on the stability of proteins and their interactions with other molecules. This study clarifies the complex genetics of ALS and offers insights into how these genetic variations may affect the effectiveness of therapeutic interventions, particularly in the context of edaravone. In this study advances our knowledge of the genetic mechanisms causing ALS vulnerability and prospective therapeutic strategies. Future studies are necessary to confirm these results and close the gap between individualised clinical applications and improved ALS care.

Keywords

References

  1. J Struct Biol. 2023 Mar;215(1):107939 [PMID: 36707040]
  2. Hum Mol Genet. 2023 Mar 20;32(7):1208-1222 [PMID: 36416308]
  3. Antibiotics (Basel). 2022 May 17;11(5): [PMID: 35625318]
  4. Sci Rep. 2021 Mar 11;11(1):5748 [PMID: 33707641]
  5. Int J Mol Sci. 2021 Nov 12;22(22): [PMID: 34830115]
  6. Sci Rep. 2022 Mar 7;12(1):3656 [PMID: 35256641]
  7. FASEB J. 2021 Sep;35(9):e21810 [PMID: 34390520]
  8. Nat Rev Drug Discov. 2023 Mar;22(3):185-212 [PMID: 36543887]
  9. Genes (Basel). 2022 Mar 18;13(3): [PMID: 35328090]
  10. Int J Mol Sci. 2022 Aug 19;23(16): [PMID: 36012622]
  11. Emerg Top Life Sci. 2023 Dec 14;7(3):289-312 [PMID: 37668011]
  12. Front Neurol. 2023 May 17;14:1169689 [PMID: 37265463]
  13. Mol Divers. 2022 Jun;26(3):1399-1409 [PMID: 34181147]
  14. Nat Rev Neurol. 2023 Oct;19(10):617-634 [PMID: 37709948]
  15. J Neurol Sci. 2022 Mar 15;434:120099 [PMID: 34965490]
  16. Eur J Neurol. 2020 Jul;27(7):1304-1309 [PMID: 32250500]
  17. Cells. 2023 May 31;12(11): [PMID: 37296644]
  18. Front Genet. 2021 Dec 02;12:784996 [PMID: 34925464]
  19. Int J Mol Sci. 2021 Sep 11;22(18): [PMID: 34575995]
  20. Oxid Med Cell Longev. 2021 Dec 20;2021:5599265 [PMID: 34966477]
  21. Front Neurosci. 2023 Aug 10;17:1189470 [PMID: 37638324]
  22. 3 Biotech. 2023 Mar;13(3):92 [PMID: 36845075]
  23. Sci Rep. 2017 Mar 14;7:44606 [PMID: 28291249]
  24. IBRO Neurosci Rep. 2023 Mar 27;14:384-392 [PMID: 37101819]
  25. J Biomol Struct Dyn. 2023;41(21):11969-11986 [PMID: 36617892]
  26. Hum Cell. 2023 Jan;36(1):41-61 [PMID: 36445534]
  27. Biochem Genet. 2021 Apr;59(2):422-436 [PMID: 33048279]
  28. Sci Rep. 2022 Jan 7;12(1):103 [PMID: 34996976]
  29. Ann Neurol. 2021 Aug;90(2):177-188 [PMID: 34219266]
  30. Neurobiol Aging. 2023 Mar;123:111-128 [PMID: 36117051]
  31. Neurotherapeutics. 2022 Jul;19(4):1159-1179 [PMID: 36068427]
  32. Methods. 2022 Jul;203:297-310 [PMID: 34500068]
  33. Comput Biol Chem. 2021 Oct;94:107560 [PMID: 34455166]
  34. J Biomol Struct Dyn. 2021 Jan;39(1):152-170 [PMID: 31870215]
  35. Nucleic Acids Res. 2023 Jan 6;51(D1):D835-D844 [PMID: 36243988]
  36. PLoS Genet. 2021 Jul 1;17(7):e1009651 [PMID: 34197453]
  37. PLoS One. 2021 Jun 14;16(6):e0252932 [PMID: 34125870]
  38. J Biomol Struct Dyn. 2023;41(23):13937-13949 [PMID: 36946206]
  39. J Proteome Res. 2021 Aug 6;20(8):4089-4100 [PMID: 34236204]
  40. Metabolites. 2022 Mar 09;12(3): [PMID: 35323676]
  41. Chem Biol Interact. 2023 Mar 1;373:110375 [PMID: 36739931]

Word Cloud

Created with Highcharts 10.0.0ALSSOD1studygeneticSNPsproteindiscoveredlateralsclerosisaffecthigh-riskvariationsmaymutationsstabilityG38RG42DEdaravoneeffectstherapeuticAmyotrophiccomplicatedneurodegenerativedisorderaffectedhereditaryenvironmentalvariablesconditionmakeupinvestigatedfocusgene'ssingle-nucleotidepolymorphismsabilitydiseaseriskElevenmissenseimpairfunctionalitythoroughexaminationgenechosenusingvarietypredictionapproacheshighlightingimportanceaetiologyNotablywild-typestructurecompromisedvariantsAdditionallypossiblemedicationshowedgreateraffinitybindingmutantstructurespointingpotentialpersonalisedtreatmentpossibilitiesinvestigationseemfunctionalespeciallyproteinsinteractionsmoleculesclarifiescomplexgeneticsoffersinsightseffectivenessinterventionsparticularlycontextedaravoneadvancesknowledgemechanismscausingvulnerabilityprospectivestrategiesFuturestudiesnecessaryconfirmresultsclosegapindividualisedclinicalapplicationsimprovedcareComputationalscreeningdamagingnsSNPshumangenesassociatedamyotrophicidentifiesdestabilisingsilicoevaluationGeneticfactorInteractionMissensemutationSNP

Similar Articles

Cited By